Skip to main content
Log in

Effect of thiosulphinates contained in garlic extract on growth, proton fluxes and membrane potential in maize (Zea mays L.) coleoptile segments

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The effect of thiosulphinates contained in garlic extract (GE) on endogenous growth, growth in the presence of either indoleacetic acid (IAA) or fusicoccin (FC), and proton extrusion in maize coleoptile segments were studied. In addition, membrane potential changes at some GE dilutions and the protective effect of dithiothreitol (DTT) against GE toxicity were also determined. It was found that GE at almost all dilutions studied, when added to the incubation medium inhibited endogenous growth as well as growth in the presence of either IAA or FC. Simultaneous measurements of growth and external pH indicated that the administration of GE resulted in a complex change in the pH of the external medium; after an initial transient acidification, pH increased and reached the maximal value followed by a gradual decrease of medium pH. When IAA or FC was added after preincubation of the segments in the presence of GE the changes in medium pH were not significantly different from these obtained with GE only. If the coleoptile segments were first preincubated with GE and subsequently GE was removed, the addition of IAA induced strong growth and medium acidification. Dithiothreitol added together with GE neutralized the toxic effect of GE on growth of coleoptile segments incubated in the presence of IAA. The addition of GE to the control medium caused a depolarization of the membrane potential, the value of witch depended on GE dilution. These results indicate that the toxic effect of GE on growth of plant cells might be caused by disruption of the catalytic function of the plasma membrane H+-ATPase on formation of the disulfide bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

DTT:

Dithiothreitol

E m :

Membrane potential

FC:

Fusiccocin

GE:

Garlic extract

IAA:

Indole-3-acetic acid

PM:

Plasma membrane

TSs:

Tiosulfinates

References

  • Ankri S, Miron T, Rabinkov A, Wilczek M, Mirelman D (1997) Allicin from garlic strongly inhibits cysteine proteinases and cytopathic effects of Entamoeba histolytica. Antimicrob Agents Chemother 41:2286–2288

    PubMed  CAS  Google Scholar 

  • Baunsgaard L, Fuglsang AT, Jahn T, Korthout HAAJ, De Boer AH, Palmgren MG (1998) The 14-3-3 proteins associate with the plasma membrane H+-ATPase to generate a fusicoccin binding complex and a fusicoccin responsive system. Plant J 13:661–667

    Article  PubMed  CAS  Google Scholar 

  • Bleiss W, Ehwald R (1993) Transient changes in length and growth of wheat coleoptile segments following treatments with osmotica and auxin. Physiol Plant 88:541–548

    Article  CAS  Google Scholar 

  • Block E (1992) The organosulfur chemistry of the genus Allium—implications for the organic chemistry of sulfur. Angewandte Chemie. International Edition in English 31:1135–1178

    Article  Google Scholar 

  • Block E, Naganathan S, Putman D, Zhao S-H (1992) Allium chemistry: HPLC analysis of thiosulfinates from onion, garlic, wild garlic (Ramsons), leek scallion, shallot, elephant (great-headed) garlic, chive, and Chinese chive. Uniquely high allyl to methyl ratios in some garlic samples. J Agric Food Chem 40:2418–2430

    Article  CAS  Google Scholar 

  • Chang A, Slayman CW (1990) A structural change in the Neurospora plasma membrane [H+] ATPase induced by N-Ethylmaleimide. J Biol Chem 265:15531–15536

    PubMed  CAS  Google Scholar 

  • Cho MH, Spalding EP (1996) An anion channel in Arabidopsis hypocotyls activated by blue light. Proc Natl Acad Sci USA 93:8134–8138

    Article  PubMed  CAS  Google Scholar 

  • Cleland WW (1966) Dithiothreitol, a new protective reagent for SH groups. Biochemistry 3:480–482

    Article  Google Scholar 

  • Corzo-Martinez M, Corzo N, Villamiel M (2007) Biological properties of onions and garlic. Trends Food Sci Technol 18:609–625

    Article  CAS  Google Scholar 

  • Cosgrove DJ, Li LC, Cho H-T, Hoffmann-Benning S, More RC, Blecker D (2002) The growing worlds of expansins. Plant Cell Physiol 43:1436–1444

    Article  PubMed  CAS  Google Scholar 

  • Curtis H, Noll U, Störmann J, Slusarenko AJ (2004) Broad-spectrum of the volatile phytoanticipin allicin in extracts of garlic (Allium sativum L.) against plant pathogenic bacteria, fungi and Oomycetes. Physiol Mol Plant Pathol 65:79–89

    Article  CAS  Google Scholar 

  • Dreyer SA, Seymour V, Cleland RE (1981) Low conductance of plant cuticles and its relevance for the acid-growth theory. Plant Physiol 68:664–666

    Article  PubMed  CAS  Google Scholar 

  • Elzenga IT, Staal M, Prins HBA (1989) ATPase activity of isolated plasma membrane vesicle of leaves of Elodea as affected by thiol reagents and NADH/NAD+ ratio. Physiol Plant 76:379–385

    Google Scholar 

  • Feldberg RS, Chang SC, Kotok AN, Nadler M, Neuwirth Z, Sundstrom DC, Thompson NH (1988) In vitro mechanism of inhibition of bacterial cell growth by allicin. Antimicrob Agents Chemother 32:1763–1768

    PubMed  CAS  Google Scholar 

  • Feng Y, Forgac M (1994) Inhibition of vacuolar H+-ATPase by disulfide bond formation between cysteine 254 and cysteine 532 in Subunit A. J Biol Chem 269:13224–13230

    PubMed  CAS  Google Scholar 

  • Fenwick GR, Hanley AB (1985) XI. Antimicrobial effects. In: The Genus Allium, Part 3. CRC critical reviews in food science and nutrition, vol 23. CRC Press, London, UK, Issue 1, pp 1–73

  • Focke M, Feld A, Lichtenthaler HK (1990) Allicin, a naturally occurring antibiotic from garlic, specifically inhibits acetyl-CoA synthetase. FEBS Lett 261:106–108

    Article  PubMed  CAS  Google Scholar 

  • Frias I, Caldeira MT, Peréz-Castiñeira JR, Navarro-Aviñò JP, Culiañez-Maciá FA, Kuppinger O, Stransky H, Pagés M, Hager A, Serrano R (1996) A major isoform of the maize plasma membrane H+-ATPase: characterization and induction by auxin in coleoptiles. Plant Cell 8:1533–1544

    Article  PubMed  CAS  Google Scholar 

  • Fuglsang AT, Visconti S, Drumm K, Jahn T, Stensballe A, Mattei B, Jensen ON, Aducci P, Palmgren MG (1999) Binding of 14-3-3 protein to the plasma membrane H+-ATPase AHA2 involves the three C-terminal residues Tyr(946)-thr-Val and requires phosphorylation of Thr(947). J Biol Chem 274: 36774–36780

    Google Scholar 

  • Giaquinta R (1979) Phloem loading of sucrose. Involvement of membrane ATPase and proton transport. Plant Physiol 63:744–748

    Article  PubMed  CAS  Google Scholar 

  • Gilbert HF (1990) Molecular and cellular aspects of thiol-disulfide exchange. Adv Enzymol 63:69–172

    PubMed  CAS  Google Scholar 

  • Golle B, Lüttge U (1983) Inhibition of the glucose and amino acid carriers of Lemna gibba by pretreatment with HgCl2. Physiol Plant 57:62–66

    Article  CAS  Google Scholar 

  • Gustine DL (1981) Evidence for sulfhydryl involvement in regulation of phytoalexin accumulation in Trifolium repens callus tissue cultures. Plant Physiol 68:1323–1326

    Article  PubMed  CAS  Google Scholar 

  • Hager A, Lanz C (1989) Essential sulphydryl groups in the catalytic center of the tonoplast H+-ATPase from coleoptiles of Zea mays L. as demonstrated by the biotin-streptavidin-peroxidase system. Planta 180:116–122

    Article  CAS  Google Scholar 

  • Hager A, Menzel H, Krauss A (1971) Versuchte und Hypothese zur Primärwirkung des Auxins beim Streckungswachstum. Planta 100:1–15

    Article  Google Scholar 

  • Hager A, Debus G, Edel H-G, Stransky H, Serrano R (1991) Auxin induces exocytosis and the rapid synthesis of a high-turnover pool of plasma membrane H+-ATPase. Planta 185:527–537

    Article  CAS  Google Scholar 

  • Han I, Lawson L, Han G, Han P (1995) A spectrophotometric method for quantitative determination of allicin and total garlic thiosulphinates. Anal Biochem 225:157–160

    Article  PubMed  CAS  Google Scholar 

  • Juszkiewicz A, Zaborska A, Łaptaś A, Olech Z (2004) A study of the inhibition of jack bean urease by garlic extract. Food Chem 85:553–558

    Article  CAS  Google Scholar 

  • Karcz W, Burdach Z (2002) A comparison of the effects of IAA and 4-Cl-IAA on growth, proton secretion and membrane potential in maize coleoptile segments. J Exp Bot 53:1089–1098

    Article  PubMed  CAS  Google Scholar 

  • Karcz W, Stolarek J (1988) Effect of UV-C radiation on extension growth, H+-extrusion and transmembrane electric potential in maize coleoptile segments. Physiol Plant 74:770–774

    Article  CAS  Google Scholar 

  • Karcz W, Stolarek J, Pietruszka M, Malkowski E (1990) The dose-response curves for IAA-induced elongation growth and acidification of the incubation medium of Zea mays L coleoptile segments. Physiol Plant 80:257–261

    Article  CAS  Google Scholar 

  • Karcz W, Stolarek J, Lekacz H, Kurtyka R, Burdach Z (1995) Comparative investigation of auxin and fusicoccin-induced growth and H+-extrusion in coleoptile of Zea mays L. Acta Physiol Plant 17:3–8

    CAS  Google Scholar 

  • Lancaster IE, Collin HA (1981) Presence of alliinase in isolated vacuoles and of alkyl cysteine sulfoxides in cytoplasm of bulbs of onion (Allium cepa). Plant Sci Lett 22:169–176

    Article  CAS  Google Scholar 

  • Lawson LD (1996) The composition and chemistry of garlic cloves and processed garlic. In: Koch HP, Lawson LD (eds) Garlic the science and therapeutic application of Allium sativum L. and related species, 2 edn. Willians and Williams, Baltimore, pp 37–107

    Google Scholar 

  • Lawson LD (1998) Garlic: a review of its medicinal effect and indicated active compounds. In: Lawson LD, Bauer R (eds) Phytomedicines of Europe: their chemistry and biological activity. American Chemical Society, Washington, pp 176–209

    Chapter  Google Scholar 

  • Lawson LD, Huges BG (1992) Characterization of the formation of allicin and other thiosulphinates from garlic. Planta Med 58:345–350

    Article  PubMed  CAS  Google Scholar 

  • Lawson LD, Wood SG, Huges BG (1991) HPLC analysis of allicin and other thiosulfinates in garlic clove homogenates. Planta Med 57:263–270

    Article  PubMed  CAS  Google Scholar 

  • Lewis BD, Karlin-Neumann G, Davis RW, Spalding EP (1997) Ca2+-activated anion channels and membrane depolarizations induced by blue light and cold in Arabidopsis seedlings. Plant Physiol 114:1327–1334

    Article  PubMed  CAS  Google Scholar 

  • Lichtner FT, Lucas WJ, Spanswick R (1981) Effect of sulfhydryl reagents on the biophysical properties of the plasmalemma of Chara coralline. Plant Physiol 68:899–904

    Article  PubMed  CAS  Google Scholar 

  • Lüthen H, Bigdon M, Böttger M (1990) Re-examination of the acid-growth theory of auxin action. Plant Physiol 93:931–939

    Article  PubMed  Google Scholar 

  • Marrè E (1979) Fusicoccin: a tool in plant physiology. Annu Rev Plant Physiol 30:273–288

    Article  Google Scholar 

  • Minorsky PV (1989) Temperature sensing by plants: a review and hypothesis. Plant Cell Environ 12:119–135

    Article  CAS  Google Scholar 

  • Miron T, Rabinkov A, Mirelman D, Wilchek M, Weiner L (2000) The mode of action of allicin: its ready permeability through phospholipid membranes may contribute to its biological activity. Biochim Biophys Acta 1463:20–30

    Article  PubMed  CAS  Google Scholar 

  • Moesta P, Grisebach H (1981) Investigation of the mechanism of phytoalexin accumulation in soybean induced by glucan or mercury chloride. Arch Biochem Biophys 211:39–43

    Article  PubMed  CAS  Google Scholar 

  • Moyen C, Johannes E (1996) Systemin transiently depolarizes the tomato mesophyl cell membrane and antagonizes fusicoccin-induced extracellular acidification of mesophyll tissue. Plant Cell Environ 19:464–470

    Article  CAS  Google Scholar 

  • Narváez-Vásquez J, Orozco-Cárdenas ML, Ryan CA (1994) A sulfhydryl reagent modulates systemic signaling for wound-induced and systemin-induced proteinase inhibitor synthesis. Plant Physiol 105:725–730

    PubMed  Google Scholar 

  • Obagwu J, Korsten L (2003) Control of citrus green and blue molds with garlic extract. Eur J Plant Pathol 109:221–225

    Article  CAS  Google Scholar 

  • Oecking C, Hagemann K (1999) Association of 14-3-3 proteins with the C-terminal autoinhibitory domain of the plant plasma membrane H+-ATPase generates a fusicoccin-binding complex. Planta 207:480–482

    Article  CAS  Google Scholar 

  • Pedraza-Chaverri J, Medina-Campos ON, Ávila-Lombardo R, Zúñiga-Bustos AB, Orozco-Ibarra M (2006) Reactive oxygen species scavenging capacity of different cooked garlic preparations. Life Sci 78:761–770

    Article  PubMed  CAS  Google Scholar 

  • Pelissier B, Thibaud JB, Grignon C, Esquerré-Tigayé MT (1986) Cell surfaces in plant-microorganism interactions. VII Elicitor preparations from two fungal pathogens depolarize plant membranes. Plant Sci 46:103–109

    Article  CAS  Google Scholar 

  • Peters WS, Lüthen H, Böttger M, Felle H (1998) The temporal correlation of changes in apoplast pH and growth rate in maize coleoptile segments. Aust J Plant Physiol 25:31–35

    Article  Google Scholar 

  • Petrov VW, Pardo JP, Slayman CW (1997) Reactive cysteines of the Yeast plasma-membrane H+-ATPase (PMA1). Mapping the sites of inactivation by N-Ethylmaleimide. J Biol Chem 272:1688–1693

    Article  PubMed  CAS  Google Scholar 

  • Portz D, Nall U, Slusarenko AJ (2005) Allicin from garlic (Allium sativum L.): a new look at an old story. In: Dehne H-W, Gissi U, Kuck KH, Russel PE, Lyr H (eds) Proceedings of the 14th international reinhardsbrunn symposium, modern fungicides and antifungal compounds IV, British Crop Production Council, Alton, UK, pp 227–234

  • Prasad K, Laxdal VA, Yu M, Raney BL (1995) Antioxidant activity of allicin, an active principle in garlic. Mol Cell Biochem 148:183–189

    Article  PubMed  CAS  Google Scholar 

  • Rabinkov A, Miron T, Konstantinovski L, Wilchek M, Mirelman D, Weiner L (1998) The mode of action of allicin: trapping of radicals and interaction with thiol containing proteins. Biochem at Biopys Acta 1379:233–244

    Article  CAS  Google Scholar 

  • Rayle DL, Cleland RE (1970) Enhancement of wall loosening and elongation by acid solutions. Plant Physiol 46:250–253

    Article  PubMed  CAS  Google Scholar 

  • Rayle DL, Cleland RE (1992) The acid-growth theory of auxin induced cell elongation is alive and well. Plant Physiol 99:1271–1274

    Article  PubMed  CAS  Google Scholar 

  • Roberts MR, Salinas J, Collinge DB (2002) 14-3-3 proteins and the response to abiotic and biotic stress. Plant Mol Biol 50:1031–1039

    Article  PubMed  CAS  Google Scholar 

  • Schaller A, Oecking C (1999) Modulation of plasma membrane H+-ATPase activity differentially activates wound and pathogen defense responses in tomato plants. Plant Cell 11:263–272

    Article  PubMed  CAS  Google Scholar 

  • Slusarenko AJ, Patel A, Portz D (2008) Control of plant diseases by natural products: alicin from garlic as a case study. Eur J Plant Pathol 121:313–322

    Article  Google Scholar 

  • Spring O, Hager A (1982) Inhibition of elongation growth by two sesquiterpene lactones isolated from Helianthus annuus L. Planta 156:433–440

    Article  CAS  Google Scholar 

  • Spring O, Wolz C, Hager A (1988) Auxin-induced N-ethylmaleimide (NEM) effects on elongation growth of coleoptiles and auxin-induced [14C]-NEM labeling of membrane proteins. Physiol Plant 72:305–310

    Article  CAS  Google Scholar 

  • Stolarek J, Karcz W (1987) Effects of UV-C radiation on membrane potential and electric conductance in internodal cells of Nitellopsis obtusa. Physiol Plant 70:473–478

    Article  Google Scholar 

  • Vanderhoef LN, Dute RR (1981) Auxin-regulated wall loosening and sustained growth in elongation. Plant Physiol 67:146–149

    Article  PubMed  CAS  Google Scholar 

  • Vanderhoef LN, Stahl CA, Williams CA, Brinkman KA, Greenfield JC (1976) Additional evidence for separable responses to auxin in soybean hypocotyl. Plant Physiol 57:817–819

    Article  PubMed  CAS  Google Scholar 

  • Wills ED (1956) Enzyme inhibition by allicin, the active principle of garlic. Biochem J 63:514–520

    PubMed  CAS  Google Scholar 

  • Würtele M, Jelich-Ottmann Ch, Wittinghofer A, Oecking C (2003) Structural view of a fungal toxin acting on a 14-3-3 regulatory complex. EMBO J 22:987–994

    Article  PubMed  Google Scholar 

  • Yang YL, Zhang F, He WL, Wang XM, Zhang LY (2003) Iron-mediated inhibition of H+-ATPase in plasma membrane vesicle isolated from wheat roots. Cell Mol Life Sci 60:1249–1257

    PubMed  CAS  Google Scholar 

  • Zaborska W, Karcz W, Kot M, Juszkiewicz A (2009) Modification of jack bean urease by thiosulphinates contained in garlict extract: DTNB titration studies. Food Chem 112:42–45

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Peter V. Minorsky (Mercy College, New York, USA) for critical reading of the manuscript and providing numerous useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waldemar Karcz.

Additional information

Communicated by K. Trebacz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polak, M., Zaborska, W., Tukaj, Z. et al. Effect of thiosulphinates contained in garlic extract on growth, proton fluxes and membrane potential in maize (Zea mays L.) coleoptile segments. Acta Physiol Plant 34, 41–52 (2012). https://doi.org/10.1007/s11738-011-0803-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-011-0803-z

Keywords

Navigation