Acta Physiologiae Plantarum

, Volume 33, Issue 5, pp 1905–1912 | Cite as

Effects of carbon source, polyethylene glycol and abscisic acid on secondary embryo induction and maturation in rapeseed (Brassica napus L.) microspore-derived embryos

  • A. Yadollahi
  • M. R. Abdollahi
  • A. Moieni
  • M. Danaee
Original Paper

Abstract

In this study, the effects of carbon sources, abscisic acid (ABA) either alone or in combination with polyethylene glycol (PEG) were evaluated on secondary embryo (SE) induction and maturation in rapeseed microspore-derived embryos (MDE) of cultivars Global, PF704 and Option. Among various carbon sources tested (sucrose, glucose, fructose and sorbitol), the use of 0.3 M (300 mOsml−1) glucose and 0.2 M (200 mOsml−1) sorbitol in SE induction medium (for cultivars Global and PF704) and sorbitol at 0.2 and 0.3 M (200 and 300 mOsml−1, for cultivar Option), induced the highest secondary embryogenesis percentage (%SE). The highest number of SEs per each MDE (SE/MDE) was observed with 0.2 M (200 mOsml−1) sorbitol in cultivar Global and with 0.3 M (300 mOsml−1) glucose in cultivars PF704 and Option. In another part of this study, the effect of different concentrations of ABA (0, 20, 40, 60, 80 and 100 μM) and of a combined use of ABA (0 and 40 μM) and PEG 4000 or PEG 6000 at 15 g l−1 (3.75 and 2.5 mOsml−1, respectively) was examined on induction and maturation of SEs. In the first experiment, the use of ABA in SE induction medium reduced the mean number of SE/MDE in the three studied cultivars, whereas use of 40–80 μM ABA in SE induction medium increased the percentage of mature SEs in each cultivar. The combined use of PEG with or without ABA also reduced the mean number of SE/MDE compared with control, but resulted in significant enhancement of the percentages of mature SEs for the three cultivars.

Keywords

Brassica napus Microspore-derived embryos Secondary embryogenesis Embryo maturation Abscisic acid Polyethylene glycol 

Abbreviations

DH

Doubled haploid

MDE

Microspore-derived embryo

SE

Secondary embryo

%SE

Secondary embryogenesis percentage (percentage of microspore-derived embryos producing secondary embryos)

SE/MDE

Number of secondary embryos per each primary microspore-derived embryos

SSE

Secondary somatic embryo

ABA

Abscisic acid

PEG

Polyethylene glycol

References

  1. Abdollahi MR, Moieni A, Jalali Javaran M (2004) Interactive effects of heat shock and culture density on embryo induction in isolated microspores culture of Brassica napus L. cv. Global. Iranian J Biotech 2:97–100Google Scholar
  2. Abdollahi MR, Corral-Martínez P, Mousavi A, Salmanian AH, Moieni A, Seguí-Simarro JM (2009a) An efficient method for transformation of pre-androgenic, isolated Brassica napus microspores involving microprojectile bombardment and Agrobacterium-mediated transformation. Acta Physiol Plant 31:1313–1317CrossRefGoogle Scholar
  3. Abdollahi MR, Moieni A, Mousavi A, Salmanian AH (2009b) Secondary embryogenesis and transient expression of the β-glucuronidase gene in hypocotyls of rapeseed (Brassica napus L.) microspore-derived embryos. Biol Plant 53:573–577CrossRefGoogle Scholar
  4. Abdollahi MR, Moieni A, Mousavi A, Salmanian AH (2011) High frequency production of rapeseed transgenic plants via combination of microprojectile bombardment and secondary embryogenesis of microspore-derived embryos. Mol Biol Rep 38:711–719. doi:10.1007/s11033-010-0158-3 PubMedCrossRefGoogle Scholar
  5. Agarwal S, Kanwar K, Sharma DR (2004) Factors affecting secondary somatic embryogenesis and embryo maturation in Morus alba L. Sci Hortic 102:359–368CrossRefGoogle Scholar
  6. Ammirato PV (1974) The effect of abscisic acid on the development of somatic embryos from cells of caraway (Carum carvi L.). Bot Gaz 135:328–337CrossRefGoogle Scholar
  7. Ammirato PV (1983) Embryogenesis. In: Evans DA, Sharp WR, Ammirato PV, Yamada Y (eds) Handbook of plant cell culture, techniques for propagation and breeding, vol 1. Collier Macmillan, London, pp 82–122Google Scholar
  8. Ammirato PV (1987) Organizational events during somatic embryogenesis. In: Green CE, Somers DA, Hackett WP, Biesboer DD (eds) Plant biology plant tissue and cell culture. Alan R. Liss, New York, pp 57–81Google Scholar
  9. Attree SM, Moore D, Sawhney VR, Fowke LC (1991) Enhanced maturation and desiccation tolerance of white spruce [Picea glauca (Moench.) Voss] somatic embryos: effects of a non-plasmolysing water stress and abscisic acid. Ann Bot 68:519–525Google Scholar
  10. Bardley PM, El-Fiki F, Giles KL (1984) Polyamine and arginine affect somatic embryogenesis of Daucus carota. Plant Sci Lett 34:397–401CrossRefGoogle Scholar
  11. Bozhkov PV, von Arnold S (1998) Polyethylene glycol promotes maturation but inhibits further development of Picea abies somatic embryos. Physiol Plant 104:211–224CrossRefGoogle Scholar
  12. Capuana M, Debergh PC (1997) Improvement of the maturation and germination of horse chestnut somatic embryos. Plant Cell Tiss Org Cult 48:23–29CrossRefGoogle Scholar
  13. Chen JL, Beversdorf WD (1994) A combined use of microprojectile bombardment and DNA imbibition enhances transformation frequency of canola. Theor Appl Genet 88:187–192Google Scholar
  14. Chen JT, Chang WC (2004) Induction of repetitive embryogenesis from seed-derived protocorms of Phalaenopsis amabilis var. Formosa Shimadzu. In Vitro Cell Dev Biol Plant 40:290–293CrossRefGoogle Scholar
  15. Choi YE, Kim JW, Soh WY (1997) Somatic embryogenesis and plant regeneration from suspension cultures of Acanthopanax koreanum Nakai. Plant Cell Rep 17:84–88CrossRefGoogle Scholar
  16. Daigny G, Paul H, Sangwan RS, Sangwan-Norreel BS (1996) Factors influencing secondary somatic embryos in Malux × domestica Borkh. (cv. ‘Gloster 69’). Plant Cell Rep 16:153–157CrossRefGoogle Scholar
  17. das Neves LO, Duque SRL, de Almeida JS, Fevereiro PS (1999) Repetitive somatic embryogenesis in Medicago truncatula ssp. Narbonensis and M. truncatula Gaertn cv. Jemalong. Plant Cell Rep 18:398–405CrossRefGoogle Scholar
  18. Das P, Samantaray S, Roberts AV, Rout GR (1997) In vitro somatic embryogenesis of Dalbergia sissoo Roxb.—a multipurpose timber-yielding tree. Plant Cell Rep 16:578–582Google Scholar
  19. Duncan DB (1955) Multiple range and multiple F test. Biometrics 11:1–42CrossRefGoogle Scholar
  20. Ferrie AMR, Keller WA (2007) Optimization of methods for using polyethylene glycol as a non-permeating osmoticum for the induction of microspore embryogenesis in the Brassicaceae. In Vitro Cell Dev Biol Plant 43:348–355CrossRefGoogle Scholar
  21. Fletcher R, Coventry J, Kott LS (1988) Doubled haploid technology for spring and winter Brassica napus (revised edition). OAC, Ontario, p 42Google Scholar
  22. Gamborg OL, Miller RA, Ojiwa K (1968) Nutrient requirements of suspension culture of soybean root callus. Exp Cell Res 50:151–158PubMedCrossRefGoogle Scholar
  23. Garg L, Bhandari NN, Rani V, Bhojwani SS (1996) Somatic embryogenesis and regeneration of triploid plants in endosperm cultures of Acacia nilotica. Plant Cell Rep 15:855–858CrossRefGoogle Scholar
  24. Gautheret RJ (1945) Une voie nouvelle en biologie végétale:la culture des tissus. Gallimard, Deuxieme edition, Paris, 26:581Google Scholar
  25. Giridhar P, Indu EP, Ravishankar GA, Chandrasekar A (2004) Influence of triacontanol on somatic embryogenesis in Coffea arabica L. and Coffea canephora P. ex Fr. In Vitro Cell Dev Biol Plant 40:200–203CrossRefGoogle Scholar
  26. Haddadi P, Moieni A, Karimadeh Gh, Abdollahi MR (2008) Effects of gibberellin, abscisic acid and embryo desiccation on normal plantlet regeneration, secondary embryogenesis and callogenesis in microspore culture of Brassica napus L. cv. PF704. Int J Plant Prod 2:153–162Google Scholar
  27. Ingram DS, Loh CS, MacDonald MV, Newsholme DM (1984) Secondary embryogenesis in Brassica: a tool for research and crop improvement. In: Proceedings of the Phytochemical Society, 23:219–242Google Scholar
  28. Langhansova L, Konradova H, Vanek T (2004) Polyethylene glycol and abscisic acid improve maturation and regeneration of Panax ginseng somatic embryos. Plant Cell Rep 22:725–730PubMedCrossRefGoogle Scholar
  29. Lichter R (1981) Anther culture of Brassica napus in liquid culture medium. Z Pflanzenphysiol 103:229–237Google Scholar
  30. Lichter R (1982) Induction of haploid plants from isolated pollen of Brassica napus. Z Pflanzenphysiol 105:427–434Google Scholar
  31. Linossier L, Veisseire P, Cailloux F, Coudret A (1997) Effects of abscisic acid and high concentrations of PEG on Hevea brasiliensis somatic embryos development. Plant Sci 124:183–191CrossRefGoogle Scholar
  32. Litz RE (1986) Effect of osmotic stress on embryogenesis in Carica suspension culture. J Am Soc Hort Sci 111:969–972Google Scholar
  33. Loh CS, Ingram DS (1982) Production of haploid plants from anther cultures and secondary embryoids of winter oilseed rape, Brassica napus ssp. oleifera. New Phytol 91:507–516CrossRefGoogle Scholar
  34. MacDonald MV, Hadwiger MA, Aslam FN, Ingram DS (1988) The enhancement of anther culture efficiency in Brassica napus ssp. oleifera Metzg. (Sink.) using low doses of gamma irradiation. New Physiol 110:101–107CrossRefGoogle Scholar
  35. Merkle SA, Parrott WA, Williams EG (1990) Applications of somatic embryogenesis and embryo cloning. In: Bhojwani SS (ed) Plant tissue culture: applications and limitations. Elsevier, Amsterdam, pp 67–101Google Scholar
  36. Nehlin L, Mollers C, Glimelius K (1995) Induction of secondary embryogenesis in microspore-derived embryos of Brassica napus L. Plant Sci 111:219–227CrossRefGoogle Scholar
  37. Pechan PM, Keller WA, Mandy F, Bergeron M (1988) Selection of Brassica napus L. embryogenic microspores by flow sorting. Plant Cell Rep 7:396–398Google Scholar
  38. Raemakers CJJM, Jacobsen E, Visser RGF (1994) Secondary somatic embryogenesis and applications in plant breeding. Euphytica 81:93–107CrossRefGoogle Scholar
  39. Raemakers CJJM, Jacobsen E, Visser RGF (1995) Secondary somatic embryogenesis and applications in plant breeding. Euphytica 81:93–107CrossRefGoogle Scholar
  40. Rai MK, Jaiswal VS, Jaiswal U (2008) Effect of ABA and sucrose on germination of encapsulated somatic embryos of guava (Psidium guajava L.). Sci Hort 117:302–305CrossRefGoogle Scholar
  41. Rai MK, Jaiswal VS, Jaiswal U (2009) Effect of selected amino acids and polyethylene glycol on maturation and germination of somatic embryos of guava (Psidium guajava L.). Sci Hort 121:233–236CrossRefGoogle Scholar
  42. Rajasekaran K, Heim MB, Vasil IK (1987) Endogenous abscisic acid and indole-3-acetic acid and somatic embryogenesis in cultured leaf explants of Pennisetum purpureum Schum. Plant Physiol 84:47–51PubMedCrossRefGoogle Scholar
  43. Salaj T, Matúšová R, Salaj J (2004) The effect of carbohydrates and polyethylene glycol on somatic embryo maturation in hybrid fir Abies alba × Abies numidica. Acta Biol Cracov Ser Bot 46:159–167Google Scholar
  44. Sangwan RS, Ducrocq C, Sangwan-Norreel BS (1993) Agrobacterium-mediated transformation of pollen embryos in Datura innoxia and Nicotiana tabacum: production of transgenic haploid and fertile homozygous dihaploid plants. Plant Sci 95:99–115CrossRefGoogle Scholar
  45. Shi X, Dai X, Liu G, Zhang J, Ning G, Bao M (2010) Cyclic secondary somatic embryogenesis and efficient plant regeneration in camphor tree (Cinnamomum camphora L.). In Vitro Cell Dev Biol Plant 46:117–125CrossRefGoogle Scholar
  46. Te-chato S, Hilae A (2007) High-frequency plant regeneration through secondary somatic embryogenesis in oil palm (Elaeis guineensis Jacq. var. tenera). J Agr Technol 3:345–357Google Scholar
  47. Telmer CA, Simmonds DH, Newcomb W (1992) Determination of developmental stage to obtain high frequencies of embryogenic microspores in Brassica napus. Physiol Plant 84:417–424CrossRefGoogle Scholar
  48. Thomas E, Hoffman F, Potrykus I, Wenzel G (1976) Protoplast regeneration and stem embryogenesis of haploid androgenetic rape. Mol Gen Genet 145:245–247CrossRefGoogle Scholar
  49. Traore A, Guiltinan M (2006) Effects of carbon source and explant type on somatic embryogenesis of four cacao genotypes. Hort Sci 41:753–758Google Scholar
  50. Wetherell DF (1984) Enhanced adventive embryogenesis resulting from plasmolysis of cultured wild carrot cells. Plant Cell Tiss Org Cult 3:221–227CrossRefGoogle Scholar
  51. Zeevaart JA, Creelman RA (1988) Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Plant Mol Biol 39:439–473CrossRefGoogle Scholar
  52. Zhang G, Zhang D, Tang G, He Y, Zhou W (2006) Plant development from microspore-derived embryos in oilseed rape as affected by chilling, desiccation and cotyledon excision. Biol Plant 50:180–186CrossRefGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2011

Authors and Affiliations

  • A. Yadollahi
    • 1
  • M. R. Abdollahi
    • 2
  • A. Moieni
    • 3
  • M. Danaee
    • 4
  1. 1.Young Researchers ClubIslamic Azad University of RoudehenTehranIslamic Republic of Iran
  2. 2.Department of Agronomy and Plant Breeding, Faculty of AgricultureBu-Ali Sina UniversityHamedanIslamic Republic of Iran
  3. 3.Plant Breeding Department, Faculty of AgricultureTarbiat Modares UniversityTehranIslamic Republic of Iran
  4. 4.Islamic Azad University of RoudehenTehranIslamic Republic of Iran

Personalised recommendations