Skip to main content
Log in

Factors altering the membrane fluidity of spinach thylakoid as determined by fluorescence polarization

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Alterations in fluidity of thylakoid membranes isolated from spinach chloroplasts in response to sodium bisulfite (NaHSO3), hydrogen peroxide (H2O2), sodium dodecyl sulfate (SDS), bovine serum albumin (BSA), and free linoleic acid (LA) were investigated by means of a fluorescence polarization study with 1,6-diphenyl-1,3,5-hexatriene as the fluorescence probe. A decrease in fluidity and an increase in microviscosity of membrane were caused by NaHSO3 and H2O2 treatment. In contrast, SDS and BSA were found to increase thylakoid membranes fluidity and decrease microviscosity, in which the corresponding correlation coefficients were −0.9995 to −0.9516 (SDS) and −0.9359 (BSA), respectively. No changes in thylakoid membranes fluidity induced by free LA were found until its concentration above 5 mM where the polarization value (P value) declined (increased fluidity). The results suggest that the changes in thylakoids membrane fluidity might depend on the characteristics, mechanism and extent of the interactions between membrane components and compounds added.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DPH:

1,6-Diphenyl-1,3,5,-hexatriene

SDS:

Sodium dodecyl sulfate.

LA:

Linoleic acid

References

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplast: polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  PubMed  CAS  Google Scholar 

  • Barber J, Chow WS, Scoufflaire C, Lannoye R (1980) The relationship between thylakoid stacking and salt induced chlorophyll fluorescence change. Biochim Biophys Acta 591:92–103

    Article  PubMed  CAS  Google Scholar 

  • Beck R, Bertolino S, Abbot SE, Aaronson PI, Smirnov SV (1998) Modulation of arachidonic acid release and membrane fluidity by albumin in vascular smooth muscle and endothelial cells. Circulation Res 83:923–931

    PubMed  CAS  Google Scholar 

  • Bowler C, Van Camp W, Van Montagu M, Inze D (1994) Superoxide dismutase in plant. CRC Crit Rev Plant Sci 13:199–218

    CAS  Google Scholar 

  • Covello PS, Chang A, Dumbroff EB, Thompson JE (1989) Inhibition of photosystem II precedes thylakoid membrane lipid peroxidation in bisulfite-treated leaves of Phaseolus vuigaris. Plant Physiol 90:1492–1497

    Article  PubMed  CAS  Google Scholar 

  • De Santis A, Landi P, Genchi G (1999) Changes of mitochondrial properties in maize seedlings associated with selection for germination at low temperature. Fatty acid composition, cytochrome c oxidase, and adenine nucleotide translocase activities. Plant Physiol 119:743–754

    Article  PubMed  Google Scholar 

  • Deo PM, Biswal UC, Biswal B (2006) Water stress-sensitized photoinhibition in senescing cotyledons of clusterbean: changes in thylakoid structure and inactivation of photosystem 2. Photosynthetica 44:187–192

    Article  CAS  Google Scholar 

  • Desikan R, Mackerness SA, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172

    Article  PubMed  CAS  Google Scholar 

  • Dimitrova MN, Matsumura H, Dimitrova A, Neitchev VZ (2000) Interaction of albumins from different species with phospholipid liposomes. Mutiple binding site system. Int J Biol Macromol 27:187–194

    Article  PubMed  CAS  Google Scholar 

  • Garavito RM, Ferguson-Miller S (2001) Detergents as tools in membrane biochemistry. J Biol Chem 276:32403–32406

    Article  PubMed  CAS  Google Scholar 

  • Hiller RG, Raison JK (1980) The fluidity of chloroplast thylakoid membranes and their constituent lipids: a comparative study by electron spin resonance. Biochim Biophys Acta 599:63–72

    Article  PubMed  CAS  Google Scholar 

  • Jajoo A, Kawamori A (2006) Anion effects on the structural organization of spinach thylakoid membranes. Biol Plant 50:444–446

    Article  CAS  Google Scholar 

  • Keller S, Heerklotz H, Jahnke N, Blume A (2006) Thermodynamics of lipid membrane solubilization by sodium dodecyl sulfate. Biophys J 90:4509–4521

    Article  PubMed  CAS  Google Scholar 

  • Kopanchur S, Rinken A (2001) Changes in membrane fluidity during the micelle formation determine the efficiency of the solubilization of muscarinic receptors. Proc Estonian Acad Sci Chem 50:229–240

    Google Scholar 

  • Kragh-Hansen U, le Maire M, Moller JV (1998) The mechanism of detergent solubilization of liposomes and protein-containing membranes. Biophys J 75:2932–2946

    Article  PubMed  CAS  Google Scholar 

  • Li B, Xing D, Zhang L (2007) Involvement of NADPH oxidase in sulfur dioxide-induced oxidative stress in plant cells. Photochem Photobiol Sci 6:628–634

    Article  PubMed  CAS  Google Scholar 

  • Lin ZF, Li XP, Lin GZ, Peng CL (1997) Effects of protein modifiers, denaturants and active oxygen on photosystem 11 photoinactivation of spinach leaves. J Trop Subtrop Bot 5:59–64 (in Chinese)

    CAS  Google Scholar 

  • Lin ZF, Liu N, Lin GZ, Pan XP, Peng CL (2007) Stress-induced alteration of chlorophyll fluorescence polarization and spectrum in leaves of Alocasia macrorrhiza L. Schott J Fluoresc 17:663–669

    Article  CAS  Google Scholar 

  • Lin ZF, Liu N, Chen SW, Lin GZ, Mo H, Peng CL (2011) Bisulfite hydroponic induced oxidative stress and its effect on nutrient element compositions in rice seedlings. Bot Stud (accepted)

  • Los DA, Murata N (2004) Membrane fluidity and its roles in the perception of environmental signals. Biochim Biophys Acta 1666:142J–157J

    Google Scholar 

  • Maiseyenkava YA, Pshybytko NL, Kabashnikova LF (2005) Greening barley seedlings under high temperature. Gen Appl Plant Physiol 31:3–14

    CAS  Google Scholar 

  • Millner PA, Mitchell RAC, Chapman DJ, Barber J (1984) Fluidity properties of isolated chloroplast thylakoid lipids. Photosynth Res 5:63–76

    Article  CAS  Google Scholar 

  • Moosavi-Movahedi AA (2005) Thermodynamics of protein denaturation by sodium dodecyl sulfate. J Iran Chem Soc 2:189–196

    CAS  Google Scholar 

  • Navari-Izzo F, Ricci F, Vazzana C, Quartacci MF (1995) Unusual composition of thylakoid membranes of the resurrection plant Boea hygroscopica: changes in lipids upon dehydration and rehydration. Physiol Plant 94:135–142

    Article  CAS  Google Scholar 

  • Páli T, Garab G, Horváth LI, Kóta ZL (2003) Functional significance of the lipid–protein interface in photosynthetic membranes. Cell Mol Life Sci 60:1591–1606

    Google Scholar 

  • Shaikh SR, Edidin M (2006) Polyunsatursted fatty acids, membrane organization, T cells, and antigen presentation. Am J Clin Nutr 84:1277–1289

    PubMed  CAS  Google Scholar 

  • Shinitzky M, Barenholz Y (1978) Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim Biophys Acta 515:367–394

    PubMed  CAS  Google Scholar 

  • Velitchkova M, Popova A (2005) High light-induced changes of 77K fluorescence emission of pea thylakoid membrane with altered membrane fluidity. Bioelectrochemistry 67:81–90

    Article  PubMed  CAS  Google Scholar 

  • Vogg G, Heim R, Gotschy B, Beck E, Hansen J (1998) Frost hardening and photosynthetic performance of Scots pine (Pinus sylvestris L.) II. Seasonal changes in the fluidity of thylakoid membranes. Planta 204:201–206

    Article  CAS  Google Scholar 

  • Yamamoto Y, Ford RC, Barbar J (1981) Relationship between thylakoid membrane fluidity and the functioning of pea chloroplasts. Plant Physiol 67:1069–1072

    Article  PubMed  CAS  Google Scholar 

  • Yang CM, Hsu JC, Lu YK, Yin MH (1996) Pigment solubilization of the chloroplast thylakoid membranes by a surfactant. Bot Bull Acad Sin 37:121–126

    CAS  Google Scholar 

  • Yu B, Benning C (2003) Anionic lipids are required for chloroplast structure and function in Arabidopsis. Plant J 36:762–770

    Article  PubMed  CAS  Google Scholar 

  • Zavodnik IB, Zaborowski A, Nickurzak A, Bryszewska M (1997) Effect of free fatty acid on erythrocyte morphology and membrane fluidity. Biochem Mol Biol 42:123–133

    CAS  Google Scholar 

Download references

Acknowledgments

The current study was supported by the Knowledge Innovation Program of the Chinese Academy of Sciences, Grant No. KSCX2-EW-J-28 and Scientific Start-up Foundation of Ministry of Education for Returned Oversea Scientist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Fang Lin.

Additional information

Communicated by H. Gabrys.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Z.F., Liu, N., Lin, G.Z. et al. Factors altering the membrane fluidity of spinach thylakoid as determined by fluorescence polarization. Acta Physiol Plant 33, 1019–1024 (2011). https://doi.org/10.1007/s11738-011-0737-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-011-0737-5

Keywords

Navigation