Skip to main content

Arbuscular mycorrhizal influence on growth, photosynthetic pigments, osmotic adjustment and oxidative stress in tomato plants subjected to low temperature stress

Abstract

The influence of the arbuscular mycorrhizal (AM) fungus, Glomus mosseae, on characteristics of growth, photosynthetic pigments, osmotic adjustment, membrane lipid peroxidation and activity of antioxidant enzymes in leaves of tomato (Lycopersicon esculentum cv Zhongzha105) plants was studied in pot culture under low temperature stress. The tomato plants were placed in a sand and soil mixture at 25°C for 6 weeks, and then subjected to 8°C for 1 week. AM symbiosis decreased malondialdehyde (MDA) content in leaves. The contents of photosynthetic pigments, sugars and soluble protein in leaves were higher, but leaf proline content was lower in mycorrhizal than non-mycorrhizal plants. AM colonization increased the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX) in leaves. The results indicate that the AM fungus is capable of alleviating the damage caused by low temperature stress on tomato plants by reducing membrane lipid peroxidation and increasing the photosynthetic pigments, accumulation of osmotic adjustment compounds, and antioxidant enzyme activity. Consequently, arbuscular mycorrhiza formation highly enhanced the cold tolerance of tomato plant, which increased host biomass and promoted plant growth.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abdel Latef AA, Shaddad KAM, Ismail MA, Abu Alhmad FM (2009) Benzyladenine can alleviate saline injury of two roselle (Hibiscus sabdariffa) cultivars via equilibration of cytosolutes including anthocyanins. Int J Agric Biol 11:151–157

    CAS  Google Scholar 

  2. Ali MB, Hahn E, Paek K (2005) Effects of temperature on oxidative stress defense systems, lipid peroxidation and lipoxygenase activity in Phalaenopsis. Plant Physiol Biochem 43:213–223

    PubMed  Article  CAS  Google Scholar 

  3. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    PubMed  Article  CAS  Google Scholar 

  4. Aroca R, Vernieri P, Irigoyen JJ, Sancher-Diaz M, Tognoni F, Pardosso A (2003) Involvement of abscisic acid in leaf and root of maize (Zea mays L.) in avoiding chilling induced water stress. Plant Sci 165:671–679

    Article  CAS  Google Scholar 

  5. Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    PubMed  Article  CAS  Google Scholar 

  6. Badour SSA (1959) Analytisch–chemische Untersuchung des Kaliummangels bei Chlorella im Vergleich mit anderen Mangelzuständen. Ph.D. Dissertation Göttingen

  7. Bago B, Pfeffer PE, Shachar-Hill Y (2000) Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol 124:949–958

    PubMed  Article  CAS  Google Scholar 

  8. Baon JB, Smith SE, Alston AM (1994) Phosphorus uptake and growth of barley as affected by soil temperature and mycorrhizal infection. J Plant Nutr 17:479–491

    Article  Google Scholar 

  9. Bates LS, Wladren PR, Tear DT (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  10. Bowler C, Slooten L, Vandenbraden S (1992) Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J 10:1723–1732

    Google Scholar 

  11. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein binding. Anal Biochem 72:248–254

    Google Scholar 

  12. Chance B, Meahly CA (1955) Assay of catalases and peroxidase. Methods Enzymol 2:764–775

    Article  Google Scholar 

  13. Charest C, Phan CT (1990) Cold acclimation of wheat (Triticum aestivum): properties of enzymes involved in proline metabolism. Physiol Plant 80:159–168

    Article  CAS  Google Scholar 

  14. Charest C, Dalpé Y, Brown A (1993) The effect of vesiculararbuscular mycorrhizae and chilling on two hybrids of Zea mays L. Mycorrhiza 4:89–92

    Article  Google Scholar 

  15. Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981) Leaf senescence correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  16. Entry JA, Rygiewicz PT, Watrud LS, Donnelly PK (2002) Influence of adverse soil conditions on the formation and function of arbuscular mycorrhizas. Adv Environ Res 7:123–138

    Article  CAS  Google Scholar 

  17. Farooq M, Aziz T, Wahid A, Lee DJ, Siddique KHM (2009) Chilling tolerance in maize: agronomic and physiological approaches. Crop Pasture Sci 60:501–516

    Article  Google Scholar 

  18. Ferullo J-M, Griffith M (2001) Mechanisms of cold acclimation. In: Basra AS (ed) Crop responses and adaptations to temperature stress. Food Products Press, New York, pp 109–150

    Google Scholar 

  19. Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular–arbuscular infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  20. Hajiboland R, Aliasgharzadeh N, Laiegh FS, Poschenrieder C (2010) Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.). plants Plant Soil 331:313–327

    Article  CAS  Google Scholar 

  21. Haugen LM, Smith SE (1992) The effect of high temperature and fallow period on infection of mung bean and cashew roots by the vesicular–arbuscular mycorrhizal fungus Glomus intraradices. Plant Soil 145:71–80

    Article  Google Scholar 

  22. Hawkes CV, Hartley IP, Ineson P, Fitter AH (2008) Soil temperature affects carbon allocation within arbuscular mycorrhizal networks and carbon transport from plant to fungus. Global Change Biol 14:1181–1190

    Article  Google Scholar 

  23. Herbinger K, Tausz M, Wonisch A, Soja G, Sorger A, Grill D (2002) Complex interactive effects of drought and ozone stress on the antioxidant defence systems of two wheat cultivars. Plant Physiol Biochem 40:691–696

    Article  CAS  Google Scholar 

  24. Hurry VM, Huner NPA (1992) Effect of cold hardening on sensitivity of winter and spring wheat leaves to short-term photoinhibition and recovery of photosynthesis. Plant Physiol 100:1283–1290

    PubMed  Article  CAS  Google Scholar 

  25. Jaleel CA, Riadh K, Gopi R, Manivannan P, Inès J, AI-Juburi HJ, Zhao CX, Shao HB, Panneerselvam R (2009) Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol Plant 31:427–436

    Article  Google Scholar 

  26. Kingston-Smith AH, Harbinson J, Williams J, Foyer HC (1997) Effect of chilling on carbon assimilation, enzyme activation and photosynthetic electron transport in the absence of photoinhibition in maize leaves. Plant Physiol 114:1039–1046

    PubMed  CAS  Google Scholar 

  27. Kishor PBK, Sangama S, Amrutha RN, Laxmi PS, Naidu KR, Rao KS (2005) Regulation of proline biosynthesis degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    CAS  Google Scholar 

  28. Koide RT, Schreiner RP (1992) Regulation of the vesiculararbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol Plant Mol Biol 43:557–581

    Article  CAS  Google Scholar 

  29. Kormanik PP, Bryan WC, Schultz RC (1980) Procedure and equipment for staining large number of plant roots for endomycorrhizal assay. Can J Microbiol 26:536–538

    PubMed  Article  CAS  Google Scholar 

  30. Kytöviita M, Ruotsalainen AL (2007) Mycorrhizal benefit in two low arctic herbs increases with increasing temperature. Am J Bot 94:1309–1315

    PubMed  Article  Google Scholar 

  31. Leslie SB, Israeli E, Lighthart B, Crowe JH, Crowe LM (1995) Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl Env Microbiol 61:3592–3597

    CAS  Google Scholar 

  32. Liu A, Wang B, Hamel C (2004) Arbuscular mycorrhiza colonization and development at suboptimal root zone temperature. Mycorrhiza 14:93–101

    PubMed  Article  CAS  Google Scholar 

  33. Martin P (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  Google Scholar 

  34. Martin CA, Stutz JC (2004) Interactive effects of temperature and arbuscular mycorrhizal fungi on growth, P uptake and root respiration of Capsicum annuum L. Mycorrhiza 14:241–244

    PubMed  Article  Google Scholar 

  35. Miransari M, Bahrami HA, Rejali F, Malakouti MJ (2008) Using arbuscular mycorrhiza to alleviate the stress of soil compaction on wheat (Triticum aestivum L.) growth. Soil Biol Biochem 40:1197–1206

    Article  CAS  Google Scholar 

  36. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    PubMed  Article  CAS  Google Scholar 

  37. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  38. Paradis R, Dalpé Y, Charest C (1995) The combined effect of arbuscular mycorrhizas and short-term cold exposure on wheat. New Phytol 129:637–642

    Article  Google Scholar 

  39. Polle A, Otter T, Seifert F (1994) Apoplastic peroxidases and lignification in needles of Norway (Picea abies L.). Plant Physiol 106:53–60

    PubMed  CAS  Google Scholar 

  40. Porcel R, Ruiz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J Exp Bot 55:1743–1750

    PubMed  Article  CAS  Google Scholar 

  41. Potvin C, Charest C (1991) Maternal effects of temperature on metabolism in the C4 weed Echinochloa crus-galli. Ecology 72:1973–1979

    Article  Google Scholar 

  42. Rahman M, Gul S, Ahmad I (2004) Effects of water stress on growth and photosynthetic pigments of corn (Zea mays L.) cultivars. Int J Agric Biol 6:652–655

    Google Scholar 

  43. Raju PS, Clark RB, Ellis JR, Maranville JW (1990) Effects of species of VA-mycorrhizal fungi on growth and mineral uptake of sorghum at different temperatures. Plant Soil 121:165–170

    Article  CAS  Google Scholar 

  44. Sawers RJH, Gutjahr C, Paszkowski U (2008) Cereal mycorrhiza: an ancient symbiosis in modern agriculture. Trends Plant Sci 13:93–97

    PubMed  Article  CAS  Google Scholar 

  45. Schüssler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  46. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London

    Google Scholar 

  47. Stewart RC, Bewley JD (1980) Lipid peroxidation associated with accelerated ageing of soybean axes. Plant Physiol 65:245–248

    PubMed  Article  CAS  Google Scholar 

  48. Tognetti JA, Salerno GL, Crespi MD, Pontis HG (1990) Sucrose and fructan metabolism of different wheat cultivars at chilling temperatures. Physiol Plant 78:554–559

    Article  CAS  Google Scholar 

  49. Volkmar KM, Woodbury W (1989) Effects of soil temperatures and depth on colonization and root and shoot growth of barley inoculated with vesicular–arbuscular mycorrhizae indigenous to Canadian prairie soil. Can J Bot 67:1702–1707

    Article  Google Scholar 

  50. Wang B, Funakoshi DM, Dalpé Y, Hamel C (2002) 32P absorption and translocation to host plants by AM fungi at low root zone temperature. Mycorrhiza 12:93–96

    PubMed  Article  Google Scholar 

  51. Wu QS, Xia RX, Zou YN (2006) Reactive oxygen metabolism in mycorrhizal and non-mycorrhizal citrus (Poncirus trifoliata) seedlings subjected to water stress. J Plant Physiol 163:1101–1110

    PubMed  Article  CAS  Google Scholar 

  52. Young AJ (1991) The photoprotective role of carotenoids in higher plants. Physiol Plant 83:702–708

    Article  CAS  Google Scholar 

  53. Zhang ZA, Zhang MS (2006) Experimental guide for plant physiology. High education, Beijing

    Google Scholar 

  54. Zhang F, Hamel C, Kianmehr H, Smith DL (1995) Root-zone temperature and soybean [Glycine max (L.) Merr.] vesicular–arbuscular mycorrhizae: development and interactions with the nitrogen fixing symbiosis. Environ Exp Bot 35:287–298

    Article  Google Scholar 

  55. Zhu CX, Song BF, Xu WH (2010) Arbuscular mycorrhizae improves low temperature stress in maize via alterations in host water status and photosynthesis. Plant Soil 331:129–137

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by The Egyptian Ministry of Higher Education and Scientific Research for postdoctoral fellowship (ParOwn 1207) and The Chinese High Technology Research and Development Programme (Project 2006AA10Z421).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arafat Abdel Hamed Abdel Latef.

Additional information

Communicated by M. Rapacz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Abdel Latef, A.A.H., Chaoxing, H. Arbuscular mycorrhizal influence on growth, photosynthetic pigments, osmotic adjustment and oxidative stress in tomato plants subjected to low temperature stress. Acta Physiol Plant 33, 1217–1225 (2011). https://doi.org/10.1007/s11738-010-0650-3

Download citation

Keywords

  • Antioxidant enzymes
  • Arbuscular mycorrhizal fungi
  • Chlorophyll
  • Low temperature stress
  • Membrane lipid peroxidation
  • Osmotic adjustment
  • Tomato