Skip to main content
Log in

Effects of solar ultraviolet radiation on photochemical efficiency of Chaetoceros curvisetus (Bacillariophyceae)

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

To assess the short- and long-term impacts of Ultraviolet radiation (UVR, 280–400 nm) on the red tide alga Chaetoceros curvisetus, we exposed cells to three different solar radiation treatments–PAB:280–700 nm, PA:320–700 nm, and P:400–700 nm under 20°C incubated temperature. Short-term exposures were investigated: the photochemical efficiency (ΦPSII) versus irradiance curves under six levels of solar radiation by covering the incubators with a variable number of neutral density screens (the irradiance thus varied from 100 to 3%) lasting 1 h, and long-term exposures were designed to assess how the cells acclimate to solar radiation (the growth, UVabc and ratio of repair to damage rates of D1 protein were detected). A significant decrease in the photochemical efficiency (ΦPSII) at high irradiance (100% of incident solar radiation, 261.6 Wm−2) was observed in short-term exposure (1 h). UVR-induced photoinhibition was reduced to 7% in 3% solar radiation (4.08 Wm−2), compared with 66% in 100% solar radiation (261.6 Wm−2). In long-term experiments (11 days) using batch cultures, cell densities during the first 6 days were relatively constant for treatment P, and decreased slightly under PA and PAB treaments, reflecting a change in the irradiance experienced in the laboratory to that of incident solar irradiance. Thereafter, cell density increased and UV-induced photoinhibition decreased with the following days, indicating acclimation to solar UV. At the end of experiment, cells were found to exhibit both higher ratios of repair to UV-related damage and increased concentrations of UV-absorbing compounds, whose maximum absorption was found to be at 329 nm. Our data indicate that C. curvisetus is sensitive to ultraviolet radiation, but was able to acclimate relatively rapidly (ca. 6 days) by synthesizing UV-absorbing compounds and by increasing the rates of repair processes of D1 protein in PSII.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Chl a:

Chlorophyll a

Fm′:

The instantaneous maximum fluorescence

F t :

The steady-state fluorescence of light-adapted cells

k :

Damaged rate

P:

Photosynthetically active radiation

PA:

Photosynthetically active radiation + ultraviolet A

PAB:

Photosynthetically active radiation + ultraviolet A + B

PSII:

Photosystem II

r :

Repair rate

UVA:

Ultraviolet A

UVB:

Ultraviolet B

UVabc :

The UV-absorbing compounds

UVR:

Ultraviolet radiation

YPAR :

The ΦPSII after 1 h exposure to solar PAR

Y X :

The ΦPSII after 1 h exposure to PA or PAB

ΦPSII :

Photochemical efficiency of PSII

References

  • Barber J (1995) Molecular basis of the vulnerability of photosystem II to damage by light. Aust J Plant Physiol 22:201–208

    Article  CAS  Google Scholar 

  • Barbieri ES, Villafañe VE, Helbling EW (2002) Experimental assessment of UV effects on temperate marine phytoplankton when exposed to variable radiation regimes. Limnol Oceanogr 47:1648–1655

    Article  Google Scholar 

  • Beardall J, Raven JA (2004) The potential effects of global climate change on microalgal photosynthesis, growth and ecology. Phycologia 43:26–40

    Article  Google Scholar 

  • Behrenfeld MJ, Hardy JT, Lee H II (1995) Ultraviolet-B radiation effects on inorganic nitrogen uptake by natural assemblages of oceanic phytoplankton. J Phycol 31:25–36

    Article  CAS  Google Scholar 

  • Boelen P, De-Boer MK, Kraay GW, Veldhuis MJW, Buma AGJ (2000) UVBR-induced DNA damage in natural marine picoplankton assemblages in the tropical Atlantic Ocean. Mar Ecol Prog Ser 193:1–9

    Article  CAS  Google Scholar 

  • Demming-Adams B, Adams WW (1992) Photoprotection and other responses of plants to high light stress. Ann Rev Plant Physiol 43:599–626

    Article  Google Scholar 

  • Franklin LA, Forster RM (1997) The changing irradiance environment: consequences for marine macrophyte physiology, productivity and ecology. Eur J Phycol 32:207–232

    Google Scholar 

  • Gao KS, Guan WC, Helbling EW (2007a) Effects of solar ultraviolet radiation on photosynthesis of the marine red tide alga Heterosigma akashiwo (Raphidophyceae). J Photochem Photobiol B Biol 86(2):140–148

    Article  CAS  Google Scholar 

  • Gao KS, Wu YP, Li G, Wu HY, Villafañe VE, Helbling EW (2007b) Solar UV radiation drives CO2 fixation in marine phytoplankton: a double-edged sword. Plant Physiol 144:54–59

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Pichel F (1994) A model for internal self-shading in planktonic organisms and its implications for the usefulness of ultraviolet sunscreens. Limnol Oceanogr 39:1704–1717

    Article  Google Scholar 

  • Genty BE, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    CAS  Google Scholar 

  • Greenberg BM, Gaba V, Canaani O, Malkin S, Mattoo AK, Edelman M (1989) Separate photosensitizers mediate degradation of the 32-kDa Photosystem II reaction centre protein in visible and UV spectral regions. Proc Natl Acad Sci USA 86:6617–6620

    Article  PubMed  CAS  Google Scholar 

  • Guan WC, Gao KS (2008) Light histories influence the impacts of solar ultraviolet radiation on photosynthesis and growth in a marine diatom, Skeletonema costatum. J Photochem Photobiol B Biol 91(2–3):151–156

    Article  CAS  Google Scholar 

  • Guan WC, Gao KS (2010a) Enhanced calcification ameliorates the negative effects of UV radiation on photosynthesis in the calcifying phytoplankter Emiliania huxleyi. Chin Sci Bull 55(7):588–593

    Article  CAS  Google Scholar 

  • Guan WC, Gao KS (2010b) Impacts of UV radiation on photosynthesis and growth of the coccolithophore Emiliania huxleyi (Haptophyceae). Environ Exp Bot 67:502–508

    Article  CAS  Google Scholar 

  • Guan WC, Lu SH (2010) The short and long-term response of Scripsiella trochoidea (Pyrrophyta) to solar ultraviolet radiation. Photosynthetica 48(2):287–293

    Article  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies on marine planktonic diatoms. I. Cyclotella nana (Hustedt) and Detonula confervaceae (Cleve). Can J Microbiol 8:229–239

    Article  PubMed  CAS  Google Scholar 

  • Häder DP, Lebert M, Marangoni R, Colombetti G (1999) ELDONET–European light dosimeter network hardware and software. J Photochem Photobiol B Biol 52(1–3):51–58

    Article  Google Scholar 

  • Häder DP, Kumar HD, Smith RC, Worrest RC (2007) Effect of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem Photobiol 6:267–285

    Article  Google Scholar 

  • Halac SR, Villafañe VE, Helbling EW (2010) Temperature benefits the photosynthetic performance of the diatoms Chaetoceros gracilis and Thalassiosira weissflogii when exposed to UVR. J Photochem Photobiol B Biol. doi:10.1016/j.jphotobiol.2010.07.003

  • Helbling EW, Chalker BE, Dunlap WC, Holm-Hansenn O, Villafañe VE (1996) Photoacclimation of Antarctic marine diatoms to solar ultraviolet radiation. J Exp Mar Biol Ecol 204:85–101

    Article  Google Scholar 

  • Helbling EW, Gao KS, Goncalves RJ, Wu HY, Villafañe VE (2003) Utilization of solar UV radiation by coastal phytoplankton assemblages off SE China when exposed to fast mixing. Mar Ecol Prog Ser 259:59–66

    Article  CAS  Google Scholar 

  • Heraud P, Beardall J (2000) Changes in chlorophyll fluorescence during exposure of Dunaliella tertiolecta to UV radiation indicate a dynamic interaction between damage and repair processes. Photosynth Res 63:123–134

    Article  PubMed  CAS  Google Scholar 

  • Karentz D, Clearver JE, Mitchell DL (1991) Cell survival characteristics and molecular responses of Antarctic phytoplankton to ultraviolet-B radiation. J Phycol 27:326–341

    Article  CAS  Google Scholar 

  • Lesser MP, Cullen JJ, Neale PJ (1994) Carbon uptake in a marine diatom during acute exposure to ultraviolet B radiation: Relative importance of damage and repair. J Phycol 30:183–192

    Article  CAS  Google Scholar 

  • Liang Y, Beardall J, Heraud P (2006) Effect of UV radiation on growth, chlorophyll fluorescence and fatty acid composition of Phaeodactylum tricornutum and Chaetoceros muelleri (Bacillariophyceae). Phycologia 45(6):605–615

    Article  Google Scholar 

  • Marwood CA, Smith REH, Furgal JA, Charlton MN, Solomon KR, Greenberg BM (2000) Photoinhibition of natural phytoplankton assemblages in Lake Erie exposed to solar ultraviolet radiation. Can J Fish Aquat Sci 57:371–379

    Article  CAS  Google Scholar 

  • Máté Z, Sass L, Szekeres M, Vass I, Nagy F (1998) UV-B induced differential transcription of psbA genes endoding the D1 protein of Photosystem II in the cyanobacterium Synechocystis 6803. J Biol Chem 273:17439–17444

    Article  PubMed  Google Scholar 

  • Mengelt C, Prézelin BB (2005) UVA enhancement of carbon fixation and resilience to UV inhibition in the genus Pseudo-nitzschia may provide a competitive advantage in high UV surface waters. Mar Ecol Prog Ser 301:81–93

    Article  CAS  Google Scholar 

  • Neori A, Vernet M, Holm-Hansen O, Haxo FT (1988) Comparison of chlorophyll far-red and red fluorescence excitation spectra with photosynthetic oxygen action spectra for photosystem II in algae. Mar Ecol Prog Ser 44:297–302

    Article  CAS  Google Scholar 

  • Porra RJ (2002) The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth Res 73:149–156

    Article  PubMed  CAS  Google Scholar 

  • Renger G, Völker M, Eckert H, Fromme R, Hohm-Veit S, Gräber P (1989) On the mechanism of photosystem II deterioration by UV-B irradiation. Photochem Photobiol 49:97–105

    Article  CAS  Google Scholar 

  • Sinha RP, Klisch M, Gröniger A, Häder DP (1998) Ultraviolet-absorbing/screeningsubstances in cyanobacteria, phytoplankton and macroalgae. J Photochem Photobiol B Biol 47:83–94

    Article  CAS  Google Scholar 

  • Sommaruga R, Garcia-Pichel F (1999) UV-absorbing mycosporine-like compounds in planktonic and benthic organisms from a high-mountain lake. Arch Hydrobiol 144(3):255–269

    CAS  Google Scholar 

  • Wang JH, Wu JYO (2009) ccurrence and potential risks of harmful algal blooms in the East China Sea. Sci Total Environ 407:4012–4021

    Article  PubMed  CAS  Google Scholar 

  • Weatherhead EC, Andersen SB (2006) The search of the signs of recovery of ozone layer. Nature 441:39–45

    Article  PubMed  CAS  Google Scholar 

  • Wu HY, Gao KS, Villafañe VE, Watanabe T, Helbling EW (2005) Effects of solar UV radiation on morphology and photosynthesis of filamentous cyanobacterium Arthrospira platensis. Appl Environ Microbiol 71:5004–5013

    Article  PubMed  CAS  Google Scholar 

  • Wu HY, Gao KS, Wu HY (2009) Responses of a marine red tide alga Skeletonema costatum (Bacillariophyceae) to long-term UV radiation exposures. J Photochem Photobiol B Biol 94(2):82–86

    Article  CAS  Google Scholar 

  • Xiong FS (2001) Evidence that UV-B tolerance of the photosynthetic apparatus in microalgae is related to the D1-turnover mediated repair cycle in vivo. J Plant Physiol 158:285–294

    Article  CAS  Google Scholar 

  • Zheng YQ, Gao KS (2009) Impacts of solar UV radiation on the photosynthesis, growth, and UV-absorbing compounds in Gracilaria lemaneiformis (Rhodophyta) grown at different nitrate concentrations. J Phycol 45:314–323

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mr. Walker Smith Jr. and two anonymous reviewers for their critical comments that greatly improved our manuscript. This study was funded by China National Natural Science Foundation and National Basic Research Program of China (No. U0733006 and No. 2010CB428702), China Postdoctoral Science Foundation (No. 20100470935), Research Program of Wenzhou Science & Technology Bureau (No. S20100019) and Ph.D. Foundation of Wenzhou Medical College (No. 89209008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W. C. Guan or S. H. Lu.

Additional information

Communicated by Z. Gombos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, W.C., Li, P., Jian, J.B. et al. Effects of solar ultraviolet radiation on photochemical efficiency of Chaetoceros curvisetus (Bacillariophyceae). Acta Physiol Plant 33, 979–986 (2011). https://doi.org/10.1007/s11738-010-0630-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-010-0630-7

Keywords

Navigation