Skip to main content
Log in

Salt tolerance is unrelated to carbohydrate metabolism in cowpea cultivars

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Under salinity stress, plants commonly accumulate carbohydrates for osmotic adjustment to balance the excess accumulated ions and to protect biomolecules. We selected two cowpea cultivars with contrasting response to salinity, Pitiúba (salt-tolerant) and TVu (salt-sensitive), to investigate whether the salt tolerance could be associated with changes in carbohydrate accumulation and metabolism in leaves and roots during a long-term experiment. Two salt treatments (0 and 75 mM NaCl) were applied to 10-day-old plants grown in nutrient solution for 24 days. Despite some changes in carbohydrate accumulation and carbohydrate metabolism enzymes induced by salt stress, no consistent alterations in carbohydrates could be found in leaves or roots in this study. Therefore, we suggest that tolerance to salt stress is largely unrelated to carbohydrate accumulation in cowpea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Azevedo-Neto AD, Prisco JT, Enéas-Filho J, Abreu CEB, Gomes-Filho E (2006) Effect of sat stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ Exp Bot 56:87–94. doi:10.1016/j.envexpbot.2005.01.008

    Article  Google Scholar 

  • Balibrea ME, Dell′amico J, Bolarin MC, Alfocea FP (2000) Carbon partitioning and sucrose metabolism in tomato plants growing under salinity. Physiol Plantarum 110:503–511. doi:10.1111/j.1399-3054.2000.1100412.x

    Article  CAS  Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Strategies for engineering water stress tolerance in plants. Trends Biotechnol 14:89–97. doi:10.1016/0167-7799(96)80929-2

    Article  CAS  Google Scholar 

  • Chartzoulakis K, Psarras G, Vemmos S, Loupassaki M, Bertaki M (2006) Response of two olive cultivars to salt stress and potassium supplement. J Plant Nutr 19:2063–2078. doi:10.1080/01904160600932682

    Article  Google Scholar 

  • Costa PHA, Silva JV, Bezerra MA, Enéas-Filho J, Prisco JT, Gomes-Filho E (2003) Crescimento e níveis de solutos orgânicos e inorgânicos em cultivares de Vigna unguiculata submetidos à salinidade. Rev Bras Bot 26:289–297. doi:10.1590/S0100-84042003000300002

    Article  Google Scholar 

  • Cram WJ (1976) Negative feedback regulation of transport in cells. The maintenance of turgor, volume and nutrient supply. In: Luttge U, Pitman MG (eds) Encyclopaedia of plant physiology. Springer, Berlin, pp 284–316

    Google Scholar 

  • Dantas BF, Ribeiro LS, Aragão CA (2005) Physiological response of cowpea seeds to salinity stress. Rev Bras Sementes 27:144–148. doi:10.1590/S0101-31222005000100018

    Article  Google Scholar 

  • De Costa W, Zörb C, Hartung W, Schubert S (2007) Salt resistance is determined by osmotic adjustment and abscisic acid in newly developed maize hybrids in the first phase of salt stress. Physiol Plant 131:311–321. doi:10.1111/j.1399-3054.2007.00962.x

    PubMed  Google Scholar 

  • Doehlert DC, Huber SC (1983) Regulation of spinach leaf sucrose phosphate synthase by glucose-6-phosphate, inorganic phosphate and pH. Plant Physiol 73:989–994. doi:10.1104/pp.73.4989

    Article  PubMed  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. doi:10.1021/ac60111a017

    Article  CAS  Google Scholar 

  • Ehlers JD, Hall AE (1997) Cowpea (Vigna unguiculata L. Walp.). Field Crop Res 53:187–204. doi:10.1016/S0378-4290(97)00031-2

    Article  Google Scholar 

  • Fernandes FM, Arrabaça MC, Carvalho LMM (2004) Sucrose metabolism in Lupinus albus L. under salt stress. Biol Plantarum 48:317–319. doi:10.1023/B:BIOP.0000033465.59361.d2

    Article  CAS  Google Scholar 

  • Geigenberger P, Stitt M (1993) Sucrose synthase catalyses a readily reversible reaction in vivo in developing potato tubers and other plant tissues. Planta 189:329–339. doi:10.1007/BF00194429

    Article  CAS  Google Scholar 

  • Hare PD, Cress WA, Van-Staden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553. doi:10.1046/j.1365-3040.1998.00309.x

    Article  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol 51:463–499. doi:10.1146/annurev.arplant.51.1.463

    Article  CAS  Google Scholar 

  • Hodge JE, Hofreiter BR (1962) Determination of reducing sugars and carbohydrates. In: Wilster RL, Wolfrom ML (eds) Methods in carbohydrate chemistry. Academic Press, New York, pp 380–394

    Google Scholar 

  • Huber SC, Huber JL (1996) Role and regulation of sucrose-phosphate synthase in higher plants. Annu Rev Plant Physiol 47:431–444. doi:10.1146/annurev.arplant.47.1.431

    Article  CAS  Google Scholar 

  • Jouve L, Hoffmann L, Hausman J-F (2004) Polyamine, carbohydrate, and proline content changes during salt stress exposure of aspen (Populus tremula L.): involvement of oxidation and osmoregulation metabolism. Plant Biol 6:74–80. doi:10.1055/s-2003-44687

    Article  PubMed  CAS  Google Scholar 

  • Kaur S, Gupta AK, Kaur N (2003) Indole acetic acid mimics the effect of salt stress in relation to enzymes of carbohydrate metabolism in chickpea seedlings. Plant Growth Regul 39:91–98. doi:10.1023/A:1021858802856

    Article  CAS  Google Scholar 

  • Kerepesi J, Galiba G (2000) Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Sci 40:482–487

    Article  CAS  Google Scholar 

  • Lacerda CF, Assis-Júnior JO, Lemos-Filho LCA, Guimarães FVA, Oliveira TS, Gomes-Filho E, Prisco JT, Bezerra MA (2006) Morpho-physiological responses of cowpea leaves to salt stress. Braz J Plant Physiol 18:455–465. doi:10.1590/S1677-04202006000400003

    Article  Google Scholar 

  • Meloni DA, Gulotta MR, Martínez CA (2008) Salinity tolerance in Schinopsis quebracho colorado: seed germination, growth, ion relations and metabolic responses. J Arid Environ 72:1785–1792. doi:10.1016/j.jaridenv.2008.05.003

    Article  Google Scholar 

  • Morsy MR, Jouve L, Hausman JF, Hoffmann L, Stewart JM (2007) Alteration of oxidative and carbohydrate metabolism under abiotic stress in two rice (Oryza sativa L.) genotypes contrasting in chilling tolerance. J Plant Physiol 164:157–167. doi:10.1016/j.jplph.2005.12.004

    Article  PubMed  CAS  Google Scholar 

  • Murillo-Amador B, Troyo-Diéguez E, López-Aguilar R, López-Cortes A, Tinoco-Ojanguren CL, Jones HG, Kaya C (2002) Matching physiological traits and ion concentrations associated with salt stress in cowpea genotypes. Aust J Agric Res 53:1243–1255. doi:10.1071/AR01133

    Article  CAS  Google Scholar 

  • Murillo-Amador B, Troyo-Diéguez E, García-Hernández JL, López-Aguilar R, Ávila-Serrano NY, Zamora-Salgado S, Rueda-Puente EO, Kaya C (2006) Effect of NaCl salinity in the genotypic variation of cowpea (Vigna unguiculata) during early vegetative growth. Sci Hortic 108:423–431. doi:10.1016/j.scienta.2006.02.010

    Article  CAS  Google Scholar 

  • Muscolo A, Panuccio MR, Sidari M (2003) Effects of salinity on growth, carbohydrate metabolism and nutritive properties of kikuyu grass (Pennisetum clandestinum Hochst). Plant Sci 164:1103–1110. doi:10.1016/S0168-9452(03)00119-5

    Article  CAS  Google Scholar 

  • Ottow EA, Brinker M, Teichmann T, Fritz E, Kaizer W, Brosche M, Kangasjarvi J, Jiang X, Polle A (2005) Populus euphratica displays apoplastic sodium accumulation, osmotic adjustment by decreases in calcium and soluble carbohydrates, and develops leaf succulence under salt stress. Plant Physiol 139:1762–1772. doi:10.1104/pp.105.069971

    Article  PubMed  CAS  Google Scholar 

  • Praxedes SC, Lacerda CF, DaMatta FM, Prisco JT, Gomes-Filho E (2010) Salt tolerance is associated with differences in ion accumulation, biomass allocation and photosynthesis in cowpea cultivars. J Agron Crop Sci 196:193–204. doi:10.1111/j.1439-037X.2009.00412.x

    Article  CAS  Google Scholar 

  • Rejšková A, Patková L, Stodůlková E, Lipavská H (2007) The effect of abiotic stresses on carbohydrate status of olive shoots (Olea europaea L.) under in vitro conditions. J Plant Physiol 164:174–184. doi:10.1016/j.jplph.2005.09.011

    Article  PubMed  Google Scholar 

  • Roitsch T, Gonzáles M-C (2004) Function and regulation of plant invertases. Trends Plant Sci 9:606–613

    Article  PubMed  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. W. H. Freeman and Company, New York

    Google Scholar 

  • Sung SS, Xu DP, Black CC (1989) Identification of actively filling sucrose sinks. Plant Physiol 89:1117–1121

    Article  PubMed  CAS  Google Scholar 

  • Taiz L, Zeiger E (2006) Plant Physiology. Sinauer Associates, Sunderland

    Google Scholar 

  • Touchette BW, Burkholder JM (2000) Overview of the physiological ecology of carbon metabolism in seagrasses. J Exp Mar Biol Ecol 250:169–205. doi:10.1016/S0022-0981(00)00196-9

    Article  PubMed  CAS  Google Scholar 

  • Trethewey RN, Geigenberger P, Riedel K, Hajirezaei M-R, Sonnewald U, Stitt M, Riesmeier JW, Willmitzer L (1998) Combined expression of glucokinase and invertase in potato tubers leads to a dramatic reduction in starch accumulation and a stimulation of glycolysis. Plant J 15:109–118. doi:10.1046/j.1365-313X.1998.00190.x

    Article  PubMed  CAS  Google Scholar 

  • Trivedi HB, Rao TVR, Bagdi DL, Rao GG (2004) Influence of silicon on growth and salt uptake in wheat under salinity. Indian J Plant Physiol 9:360–366

    CAS  Google Scholar 

  • Winter H, Huber SC (2000) Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes. Crit Rev Plant Sci 19:31–67

    Article  CAS  Google Scholar 

  • Yancey P, Clark ME, Had SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte system. Science 217:1214–1222. doi:10.1126/science.7112124

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for their financial support and the Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior (CAPES) for a scholarship to S.C. Praxedes during his PhD studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enéas Gomes-Filho.

Additional information

Communicated by J. Zwiazek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Praxedes, S.C., de Lacerda, C.F., Ferreira, T.M. et al. Salt tolerance is unrelated to carbohydrate metabolism in cowpea cultivars. Acta Physiol Plant 33, 887–896 (2011). https://doi.org/10.1007/s11738-010-0615-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-010-0615-6

Keywords

Navigation