Skip to main content
Log in

Salinity tolerance of hydroponically grown Pinus pinea L. seedlings

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

An Erratum to this article was published on 08 October 2010

Abstract

The salinity tolerance and ion transport of 2-month-old seedlings of stone pine (Pinus pinea L.) grown in hydroponic solution containing various concentrations of NaCl (0–100 mM) were studied. The presence of salt of up to 100 mM did not significantly reduce growth. Seedling hydration was insensitive to salinity. High salt concentrations reduced K+ and Ca2+ uptake, root accumulation, and export to shoots. Na+ and Cl ions, representing the major part of the ionic uptake, were effectively compartmentalized in vacuoles. We concluded that seedlings of stone pine cultivated hydroponically were highly tolerant to salt concentrations of up to 100 mM for a culture period of 38 days. This tolerance was associated with the accumulation of Na+ and Cl ions in the shoots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Asch F, Dingkuhn M, Wittstock C, Doerffling K (1999) Sodium and potassium uptake of rice panicles as affected by salinity and season in relation to yield and yield components. Plant Soil 207:133–145

    Article  Google Scholar 

  • Asch F, Dingkuhn M, Dörffling K, Miezan K (2000) Leaf K/Na ratio predicts salinity induced yield loss in irrigated rice. Euphytica 113:109–118

    Article  Google Scholar 

  • Barhoumi Z, Djebali W, Smaoui A, Chaïbi W, Abdelly Ch (2007) Contribution of NaCl excretion to salt resistance of Aeluropus littoralis (Willd) Parl. J Plant Physiol 164:842–850

    Article  PubMed  CAS  Google Scholar 

  • Ben Amor N, Ben Hamed K, Debez A, Grignon C, Ch Abdelly (2005) Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity. Plant Sci 168:889–899

    Article  CAS  Google Scholar 

  • Bizid E, Zid E, Grignon C (1988) Tolérance à NaCl et séléctivité K+/Na+ chez les triticales. Agronomie 8:23–27

    Article  Google Scholar 

  • Blits KC, Gallagher JL (1990) Salinity tolerance of Kosteletzkya virginica. I. Shoot growth, ion and water relations. Plant Cell Environ 13:419–425

    Article  CAS  Google Scholar 

  • Caines AM, Shennan C (1999) Interactive effects of Ca2+ and NaCl salinity on the growth of two tomato genotypes differing in Ca2+ use efficiency. Plant Physiol Biochem 37:569–576

    CAS  Google Scholar 

  • Causton DR (1991) Plant growth analysis: the variability of relative growth rate within a sample. Ann Bot 67:137–144

    Google Scholar 

  • Chen S, Li J, Fritz E, Wang S, Hüttermann A (2002) Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress. For Ecol Manag 168:217–230

    Article  Google Scholar 

  • Cramer GR, Lauchli A, Politic VS (1985) Displacement of calcium by sodium from the plasmalemma of root cells: primary response to salt stress. Plant Physiol 79:207–211

    Article  PubMed  CAS  Google Scholar 

  • Debez A, Ben Hamed K, Grignon C, Abdelly Ch (2004) Salinity effects on germination, growth, and seed production of the halophyte Cakile maritime. Plant Soil 262:179–189

    Article  CAS  Google Scholar 

  • Durand M, Lacan D (1994) Sodium partitioning within the root of soybean. Physiol Plant 91:65–71

    Article  CAS  Google Scholar 

  • El Ayeb N, Henchi B, Garrec JP, Rejeb MN (2004) Effets des embruns marins pollutes sur les feuilles d’Acacia cyanophylla Lindl. et d’Eucalyptus gomphocephala DC. du littoral tunisien. Ann For Sci 61:1–9

    Article  Google Scholar 

  • Epron D, Toussaint ML, Badot PM (1999) Effects of sodium chloride salinity on root growth and respiration in oak seedlings. Ann For Sci 56:41–47

    Article  Google Scholar 

  • Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol 28:89–121

    Article  CAS  Google Scholar 

  • Flowers TJ, Hajjibagheri MA, Yeo AR (1991) Ion accumulation in the cell walls of rice plants growing under saline conditions: evidence for the Oertli hypothesis. Plant Cell Environ 14:319–325

    Article  Google Scholar 

  • Fung LE, Wang SS, Altman A, Hüttermann A (1998) Effect of NaCl on growth, photosynthesis, ion and water relations of four poplar genotypes. For Ecol Manag 107:135–146

    Article  Google Scholar 

  • Garcia-Legaz MF, Lopez-Gomez E, Mataix Beneyto J, Navarro A, Sanchez-Blanco MJ (2008) Physiological behaviour of loquat and anger rootstocks in relation to salinity and calcium addition. J Plant Physiol 165:1049–1060

    Article  PubMed  CAS  Google Scholar 

  • Glenn EP, Olsen M, Frye R, Moore D, Miyamoto S (1994) How much sodium accumulation is necessary for salt tolerance in subspecies of the halophyte Atriplex canescens. Plant Cell Environ 17:711–719

    Article  CAS  Google Scholar 

  • Gosset DR, Banks SW, Millhollon EP, Lucas MC (1996) Antioxidant response to NaCl stress in a control and an NaCl-tolerant cotton cell line grown in the presence of paraquat, buthionine sulfoximine, and exogenous glutathione. Plant Physiol 112:803–809

    CAS  Google Scholar 

  • Grattan SR, Grieve CM (1999) Salinity-mineral nutrient relations in horticultural crops. Sci Hortic 78:127–157

    Article  CAS  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149–190

    Article  CAS  Google Scholar 

  • Hasegawa PH, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Physiol Plant Biol Mol 51:463–499

    Article  CAS  Google Scholar 

  • Hernandez JA, Campillo A, Jimenez A, Alarcon JJ, Sevilla F (1999) Response of antioxidant systems and leaf water relations to NaCl stress in pea plants. New Phytol 141:241–251

    Article  CAS  Google Scholar 

  • Hunt R (1990) Basic growth analysis. Plant growth analysis for beginners. Academic Press, London

    Google Scholar 

  • Ibrahim M, Rapp M (1979) Variation spatio-temporelle de la salinité du sol d’un peuplement de pin pignon du littoral méditerranéen. Ecol Mediter 4:49–60

    Google Scholar 

  • Khan MA, Ungar IA, Showalter AM (2000) Effects of salinity on growth, water relations and ion accumulation in the subtropical perennial halophyte, Atriplex griffithii var. stocksii. Ann Bot 85:225–232

    Article  CAS  Google Scholar 

  • Loisel R (1967) Germination du pin pignon au niveau de certaines associations végétales. Contribution à l’étude biologique des pins de la basse provence. Bull Soc Bot Fr 114:163–174

    Google Scholar 

  • Lynch J, Lauchli A (1985) Salt stress disturbs the calcium nutrition of barely (Hordeum vulgare L.). New Phytol 99:345–354

    Article  CAS  Google Scholar 

  • M’rah S, Ouerghi Z, Berthomieu C, Havaux M, Jungas C, Hajji M, Grignon C, Lachâal M (2006) Effects of NaCl on the growth, ion accumulation and photosynthetic parameters of Thellungiella halophila. J Plant Physiol 163:1022–1032

    Article  PubMed  Google Scholar 

  • Maas EV (1986) Salt tolerance of plants. Appl Agric Res 1:12–26

    Google Scholar 

  • Mahajan S, Pandey GK, Tuteja N (2007) Calcium- and salt-stress signaling in plants: shedding light on SOS pathway. Arch Biochem Biophys 471:146–158

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Martınez JP, Ledent JF, Bajji M, Kinet JM, Lutts S (2003) Effect of water stress on growth, Na and K accumulation and water use efficiency in relation to osmotic adjustment in two populations of Atriplex halimus L. J Plant Growth Regul 41:63–73

    Article  Google Scholar 

  • Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49:69–76

    Article  CAS  Google Scholar 

  • Nasri N, Khaldi A, Fady B, Triki S (2005) Fatty acids from seeds of Pinus pinea L.: composition and population profiling. Phytochemistry 66:1729–1735

    Article  PubMed  CAS  Google Scholar 

  • Rejili M, Vadel AM, Guetet A, Neffatti M (2007) Effect of NaCl on the growth and the ionic balance K+/Na+ of two populations of Lotus creticus (L.) (Papilionaceae). S Afr J Bot 73:623–631

    Article  CAS  Google Scholar 

  • Stassart JM, Neirinck L, Dejaegere R (1981) The interactions between monovalent cations and calcium during their adsorption on isolated cell walls and absorption by intact barely roots. Ann Bot 47:647–652

    CAS  Google Scholar 

  • Sun D, Dickinson G (1993) Responses to salt stress of 16 Eucalyptus species, Grevillea robusta, Lophostemon confertus and Pinus caribaea var. hondurensis. For Ecol Manag 60:1–14

    Article  Google Scholar 

  • Tuna AL, Kaya C, Ashraf M, Altunlu H, Yokas I, Yagmur B (2007) The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress. Environ Exp Bot 59:173–178

    Article  CAS  Google Scholar 

  • Yang F, Xiao X, Zhang S, Korpelainen H, Ch Li (2009) Salt stress responses in Populus cathayana Rehder. Plant Sci 176:669–677

    Article  CAS  Google Scholar 

  • Yeo A (1998) Molecular biology of salt tolerance in the context of whole plant physiology. J Exp Bot 49:915–929

    Article  CAS  Google Scholar 

  • Zid E, Grignon C (1985) Effets comparés de NaCl, KCl et Na2SO4 sur la croissance et la nutrition minérale de jeunes plantes de Citrus aurantium L. Oecologia Plantarum 7:407–416

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhamid Khaldi.

Additional information

Communicated by J. Franklin.

An erratum to this article can be found at http://dx.doi.org/10.1007/s11738-010-0620-9

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khaldi, A., Ammar, R.B., Woo, S.Y. et al. Salinity tolerance of hydroponically grown Pinus pinea L. seedlings. Acta Physiol Plant 33, 765–775 (2011). https://doi.org/10.1007/s11738-010-0601-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-010-0601-z

Keywords

Navigation