Skip to main content
Log in

Production of withanolide-A from adventitious root cultures of Withania somnifera

  • Short Communication
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Withanolides are biologically active secondary metabolites present in roots and leaves of Withania somnifera. In the present study, we have induced adventitious roots from leaf explants of W. somnifera for the production of withanolide-A, which is having pharmacological activities. Adventitious roots were induced directly from leaf segments of W. somnifera on half strength Murashige and Skoog (MS) semisolid medium (0.8% agar) with 0.5 mg l−1 indole-3-butyric acid (IBA) and 30 g l−1 sucrose. Adventitious roots cultured in flasks using half strength MS liquid medium with 0.5 mg l−1 IBA and 30 g l−1 showed higher accumulation of biomass (108.48 g l−1FW and 10.76 g l−1 DW) and withanolide-A content (8.8 ± 0.20 mg g−1 DW) within five weeks. Nearly 11-fold increment of fresh biomass was evident in suspension cultures and adventitious root biomass produced in suspension cultures possessed 21-fold higher withanolide-A content when compared with the leaves of natural plants. An inoculum size of 10 g l−1 FW favoured the biomass accumulation and withanolide-A production in the tested range of 2.5, 5.0, 10.0 and 20.0 g l−1 FW. Among different media tested [Murashige and Skoog (MS), Gamborg’s (B5), Nitsch and Nitsch (NN) and Chu’s (N6)], MS medium favoured both biomass accumulation and withanolide-A production. Half strength MS medium favoured the biomass accumulation and withanolide-A production among the different strength MS medium tested (0.25, 0.5, 0.75, 1.0, 1.5 and 2.0). The current results showed great potentiality of adventitious roots cultures for the production of withanolide-A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Atta UR, Jamal SA, Choudhary MI, Asif E (1991) Two withanolides from Withania somnifera. Phytochem 30:3824–3826

    Article  Google Scholar 

  • Betsui F, Tanaka-Nishikawa N, Shimmomura K (2004) Anthocyanin production in adventitious root cultures of Raphanus sativus L. cv. Peking Koushin. Plant Biotechnol 21:387–391

    CAS  Google Scholar 

  • Chu CC (1978) The N6 medium and its applications to anther culture of cereal crops. In: Proceedings of symposium plant tissue culture. Science Press, Beijing, pp 43–50

  • Devi PU, Kamath R, Rao BSS (2000) Radio sensitization of a mouse melanoma by withaferin A: in vitro studies. Ind J Exp Biol 38:432–437

    CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Ganzera M, Choudhary MI, Khan IA (2003) Quantitative HPLC analysis of withanolides in Withania somnifera. Fitoterapia 74:68–76

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Zhu C, Jia W, Gao W, Qui M, Zhang Y, Xiao P (2005) Induction and characterization of adventitious roots directly from the explants of Panax notoginseng. Biotechnol Lett 27:1771–1775

    Article  CAS  PubMed  Google Scholar 

  • Gupta GL, Rana AC (2007) Withania somnifera (Ashwagandha): a review. Pharmacog Rev 1:129–136

    CAS  Google Scholar 

  • Jeong CS, Murthy HN, Hahn EJ, Lee HL, Paek KY (2009) Inoculum size and auxin concentration influence the growth of adventitious roots and accumulation of ginsenosides in suspension cultures of ginseng (Panax ginseng C.A. Meyer). Acta Physiol plant 31:219–222

    Article  CAS  Google Scholar 

  • Klerk GJD, Arnholdt-Schmitt B, Lieberei R, Neumnann KH (1997) Regeneration of roots, shoots and embryos: physiological, biochemical and molecular aspects. Biol Plant 39:53–66

    Article  Google Scholar 

  • Lee CWT, Shuler ML (2000) The effect of inoculum density and conditioned medium on the production of ajmalicine and catharanthine from immobilized Catharanthus roseus cells. Biotechnol Bioeng 67:61–67

    Article  CAS  PubMed  Google Scholar 

  • Min JY, Jung HY, Kang SM, Kim YD, Kang YM, Park DJ, Prasad DT, Choi MS (2007) Production of tropane alkaloids by small-scale bubble column bioreactor cultures of Scopolia parviflora adventitious roots. Bioresource Technol 98:1748–1753

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87

    Article  CAS  PubMed  Google Scholar 

  • Ramachandra Rao S, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotech Adv 20:10–153

    Article  Google Scholar 

  • Verpoorte R, Contin A, Memelink J (2002) Biotechnology for the production of plant secondary metabolites. Phytochem Rev 1:13–25

    Article  CAS  Google Scholar 

  • Wadegaonkar PA, Bhagwat KA, Rai MK (2006) Direct rhizogenesis and establishment of fast growing normal root organ culture of Withania somnifera Dunal. Plant Cell Tiss Org Cult 84:223–225

    Article  Google Scholar 

  • Wu CH, Dewir YH, Hahn EJ, Paek KY (2006) Optimization of culturing conditions for the production of biomass and phenolics from adventitious roots of Echinacea angustifolia. J Plant Biol 49:193–199

    Article  CAS  Google Scholar 

  • Wu CH, Murthy HN, Hahn EJ, Paek KY (2007) Large-scale cultivation of adventitious roots of Echinacea purpurea in airlift bioreactors for the production of chichoric acid, chlorogenic acid and caftaric acid. Biotechnol Lett 29:1179–1182

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto O, Kamura K (1997) Production of saikosaponin in cultured roots of Bupleurum falcatum L. Plant Tissue Cult Biotechnol 3:138–147

    Google Scholar 

  • Yu KW, Hahn EJ, Paek KY (2000) Production of adventitious ginseng roots using bioreactors. Korean J Plant Tissue Cult 27:309–315

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. N. Murthy.

Additional information

Communicated by S. Lewak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Praveen, N., Murthy, H.N. Production of withanolide-A from adventitious root cultures of Withania somnifera . Acta Physiol Plant 32, 1017–1022 (2010). https://doi.org/10.1007/s11738-010-0489-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-010-0489-7

Keywords

Navigation