Skip to main content
Log in

Glyphosate affects lignin content and amino acid production in glyphosate-resistant soybean

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Farmers report that some glyphosate-resistant soybean varieties are visually injured by glyphosate. Glyphosate is the main herbicide that directly affects the synthesis of secondary compounds. In this work, we evaluated the effect of increasing rates of glyphosate on lignin and amino acid content, photosynthetic parameters and dry biomass in the early maturity group cultivar BRS 242 GR soybean. Plants were grown in half-strength complete nutrient solution and subjected to various rates of glyphosate either as a single or in sequential applications. All parameters evaluated were affected by increasing glyphosate rates. The effects were more pronounced as glyphosate rates increased, and were more intense with a single total application than sequential applications at lower rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

A :

Net photosynthesis

cv.:

Cultivar

DAE:

Days after emergence

a.e.:

Acid equivalent

GR:

Glyphosate-resistant soybean

References

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  Google Scholar 

  • Arregui MC, Lenardón A, Sanchez D, Maitre MI, Scotta R, Enrique S (2003) Monitoring glyphosate residues in transgenic glyphosate-resistant soybean. Pest Manage Sci 60:163–166

    Article  CAS  Google Scholar 

  • Beale SI (1978) δ-Aminolevulinic acid in plants: its biosynthesis, regulation and role in plastid development. Annu Rev Plant Physiol 29:95–120

    Article  CAS  Google Scholar 

  • Bernards MA, Susag LM, Bedgar DL, Anterola AM, Lewis NG (2000) Induced phenylpropanoid metabolism during suberization and lignification: a comparative analysis. J Plant Physiol 157:601–607

    CAS  PubMed  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  CAS  PubMed  Google Scholar 

  • Boocock MR, Coggins JR (1983) Kinetics of 5-enolpyruvylshikimate-3-phosphate synthase inhibition by glyphosate. FEBS Lett 154:127–133

    Article  CAS  PubMed  Google Scholar 

  • Boudet AM (2000) Lignins and lignification: selected issues. Plant Physiol Biochem 38:1–16

    Article  Google Scholar 

  • Boudet AM, Kajita S, Grima-Pettenati J, Goffner D (2003) Lignins and lignocellulosics: a better control of synthesis for new improved uses. Trend Plant Sci 8:576–581

    Article  CAS  Google Scholar 

  • Cakmak I, Yazici A, Tutus Y, Ozturk L (2009) Glyphosate reduced seed and leaf concentrations of calcium, manganese, magnesium and iron in non-glyphosate resistant soybean. Euro J Agron 31:114–119

    Article  CAS  Google Scholar 

  • Capeleti I, Bonini EA, Ferrarese MLL, Teixeira ACN, Kryzanowski FC, Ferrarese-Filho O (2005) Lignin content and peroxidase activity in soy bean seed coat susceptible and resistant to mechanical damage. Acta Physiol Plant 27:103–108

    Article  CAS  Google Scholar 

  • Chen F, Reddy MSS, Temple S, Jackson L, Shadle G, Dixon RA (2006) Multi-site genetic modulation of monolignol biosynthesis suggests new routes for formation of syringyl lignin and wall-bound ferulic acid in alfafa (Medicago sativa L.). Plant J 48:113–124

    Article  CAS  PubMed  Google Scholar 

  • Coutinho CFB, Mazo LH (2005) Metallic complex with glyphosate: a review. Quim Nova 28:1038–1045

    CAS  Google Scholar 

  • Devine M, Duke SO, Fedtke C (1993a) Inhibition of amino acid biosynthesis. In: Physiology of herbicide action. Prentice-Hall, New Jersey, pp 251–294

    Google Scholar 

  • Devine M, Duke SO, Fedtke C (1993b) Oxygen toxicity and herbicidal action; secondary physiological effects of herbicides. In: Physiology of herbicide action. Prentice-Hall, New Jersey, pp 177–188

    Google Scholar 

  • Donaldson LA (2001) Lignification and lignin topochemistry—an ultrastructural view. Phytochemistry 57:859–876

    Article  CAS  PubMed  Google Scholar 

  • Duke SO, Rimando AM, Pace PF, Reddy KN, Smeda RJ (2003) Isoflavone, glyphosate, and aminomethylphosphonic acid levels in seeds of glyphosate-treated, glyphosate-resistant soybean. J Agric Food Chem 51:340–344

    Article  CAS  PubMed  Google Scholar 

  • Ferrarese MLL, Zottis A, Ferrarese-Filho O (2002) Protein-free lignin quantification in soybean (Glycine max) roots. Biologia 57:541–543

    CAS  Google Scholar 

  • Franz JE, Mao MK, Sikorski JA (1997) Glyphosate: a unique global herbicide. ACS monograph 189, American Chemical Society, pp 521–615

  • Gosselink RJA, de Jong E, Guran B, Abacherli A (2004) Coordination network for lignin—standardisation, production and applications adapted to market requirements (EUROLIGNIN). Ind Crops Prod 20:121–129

    Article  CAS  Google Scholar 

  • Hernandez A, Garcia-Plazaola JI, Bacerril JM (1999) Glyphosate effects on phenolic metabolism of nodulated soybean (Glycine max L. Merril). J Agric Food Chem 47:2920–2925

    Article  CAS  PubMed  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method of growing plants without soil. California Agric Exper Sta Cir, n. 347

  • Johal GS, Huber DM (2009) Glyphosate effects on disease and disease resistance in plants. Euro J Agron 31:144–152

    Article  CAS  Google Scholar 

  • Kabachnik MI, Medved TY, Dyatolva NM, Rudomino MV (1974) Organophosphorus complexones. Russian Chem Rev 43:733–744

    Article  Google Scholar 

  • King CA, Purcell LC, Vories ED (2001) Plant growth and nitrogenase activity of glyphosate-tolerant soybean in response to foliar glyphosate applications. Agron J 93:79–186

    Article  Google Scholar 

  • Kishore GM, Shah DM (1988) Amino acid biosynthesis inhibitors as herbicides. Ann Rev Biochem 57:627–663

    Article  CAS  PubMed  Google Scholar 

  • LaRossa RA, Schloss JV (1984) The sulfonylurea herbicide sulfometuron methyl is an extremely potent and selective inhibitor of acetolactate synthase in Salmonella typhimurium. J Biol Chem 259:8753–8757

    CAS  PubMed  Google Scholar 

  • Liu F, Andersen MN, Jacobsen SE, Jensen CR (2005) Stomatal control and water use efficiency of soybean (Glycine max L. Merr.) during progressive soil drying. Env Exp Bot 54:33–40

    Article  CAS  Google Scholar 

  • Lora JH, Glasser WG (2002) Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J Polym Environ 10:39–48

    Article  CAS  Google Scholar 

  • Marchiosi R, Ferrarese Filho ML, Bonini EA, Fernandes NG, Ferro AP, Ferrarese Filho O (2009) Glyphosate-induced metabolic changes in susceptible and glyphosate-resistant soybean (Glycine max L.) roots. Pest Biochem Physiol 21:155–164

    Google Scholar 

  • Nilsson G (1985) Interactions between glyphosate and metals essential for plant growth. In: Grossbard E, Atkinson D (eds) The herbicide glyphosate. Butterworth, London, pp 35–47

    Google Scholar 

  • Padgette SR, Kolacz KH, Delannay XD, La Vallee BJ, Tinius CN, Rhodes WK, Otero YI, Barry GF, Eichholtaz DA, Peschke WM, Nida DL, Taylor NB (1995) Development, identification and characterization of a glyphosate tolerant soybean line. Crop Sci 35:1451–1461

    Article  CAS  Google Scholar 

  • Pihakaski S, Pihakaski K (1980) Effects of glyphosate on ultrastructure and photosynthesis of Pellia epiphylla. Ann Bot 46:133–141

    CAS  Google Scholar 

  • Pinkard EA, Pate V, Mohammed C (2006) Chlorophyll and nitrogen determination for plantation-grown Eucaliptus nitens and E. glogulus using a non-destructive meter. Forest Ecol Manag 223:211–217

    Article  Google Scholar 

  • Procópio SO, Santos JB, Silva AA, Matinez CA, Werlang RC (2004) Características fisiológicas das culturas de soja e feijão e de três espécies de plantas daninhas. Planta Daninha 22:211–216

    Google Scholar 

  • Reddy KN, Hoagland RE, Zablotowicz RM (2000) Effect of glyphosate on growth, chlorophyll, and nodulation in glyphosate-resistant and susceptible soybean (Glycine max) varieties. J New Seeds 2:37–52

    Article  Google Scholar 

  • Reddy KN, Rimando AM, Duke SO (2004) Aminomethylphosphonic acid, a metabolite of glyphosate, causes injury in glyphosate-treated, glyphosate-resistant soybean. J Agric Food Chem 52:5139–5143

    Article  CAS  PubMed  Google Scholar 

  • Rena AB, Masciotti Z (1976) Efeito do déficit hídrico sobre o metabolismo do nitrogênio e o crescimento de quatro cultivares de feijão (Phaseolus vulgaris L.). Revista Ceres 23:288–301

    Google Scholar 

  • Richardson AD, Duigan SP, Berlyn GP (2002) An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol 153:185–194

    Article  CAS  Google Scholar 

  • Saltveit ME, Mencarelli F (1988) Inhibition of ethylene synthesis and action in ripening tomato fruit by ethanol vapors. J Am Soc Hort Sci 113:742–745

    Google Scholar 

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality. Biometrika 52:591–611

    Google Scholar 

  • Shibles RM, Weber CR (1965) Leaf area, solar radiation interception, and dry matter production by various soybean planting patterns. Crop Sci 6:575–577

    Article  Google Scholar 

  • Singh BK, Siehl DL, Connelly JA (1991) Shikimate pathway: why does it mean so much to so many? Oxf Surv Plant Mol Cell Biol 7:143–185

    CAS  Google Scholar 

  • SPSS (2000) SysStat© for Windows, Version 10

  • Taiz L, Zeiger E (1998) Mineral nutrition. In: Plant physiology. Sinauer Associates, Sunderland, pp 111–144

    Google Scholar 

  • Tan S, Evans R, Singh B (2006) Herbicidal inhibitors of amino acid biosynthesis and herbicide-tolerant crops. Amino Acids 30:195–204

    Article  CAS  PubMed  Google Scholar 

  • Weaver LM, Herrmann KM (1997) Dynamics of the shikimate pathway in plants. Trends Plant Sci 2:346–351

    Article  Google Scholar 

  • Wong PK (2000) Effects of 2, 4-D, glyphosate and paraquat on growth, photosynthesis and chlorophyll-a synthesis of Scenedesmus quadricauda. Chemosphere 41:177–182

    Article  CAS  PubMed  Google Scholar 

  • Zablotowicz RM, Reddy KN (2007) Nitrogenase activity, nitrogen content, and yield responses to glyphosate in glyphosate-resistant soybean. Crop Prot 26:370–376

    Article  CAS  Google Scholar 

  • Zobiole LHS, Oliveira Jr RS, Hubner DM, Constantin J, Castro de C, Oliveira de FA, Oliveira Jr A (2009) Glyphosate reduces shoot concentration of mineral nutrients in glyphosate-resistant soybeans. Plant Soil. doi:10.1007/s11104-009-0081-3

Download references

Acknowledgments

We thank the National Council for Scientific and Technology Development (CNPq), for the scholarship and financial support for this research. R. S. Oliveira Jr and O. Ferrarese-Filho are research fellows of CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Henrique Saes Zobiole.

Additional information

Communicated by J. Franklin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zobiole, L.H.S., Bonini, E.A., de Oliveira, R.S. et al. Glyphosate affects lignin content and amino acid production in glyphosate-resistant soybean. Acta Physiol Plant 32, 831–837 (2010). https://doi.org/10.1007/s11738-010-0467-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-010-0467-0

Keywords

Navigation