Acta Physiologiae Plantarum

, Volume 32, Issue 5, pp 831–837 | Cite as

Glyphosate affects lignin content and amino acid production in glyphosate-resistant soybean

  • Luiz Henrique Saes Zobiole
  • Edicléia Aparecida Bonini
  • Rubem Silvério de OliveiraJr.
  • Robert John Kremer
  • Osvaldo Ferrarese-Filho
Original Paper

Abstract

Farmers report that some glyphosate-resistant soybean varieties are visually injured by glyphosate. Glyphosate is the main herbicide that directly affects the synthesis of secondary compounds. In this work, we evaluated the effect of increasing rates of glyphosate on lignin and amino acid content, photosynthetic parameters and dry biomass in the early maturity group cultivar BRS 242 GR soybean. Plants were grown in half-strength complete nutrient solution and subjected to various rates of glyphosate either as a single or in sequential applications. All parameters evaluated were affected by increasing glyphosate rates. The effects were more pronounced as glyphosate rates increased, and were more intense with a single total application than sequential applications at lower rates.

Keywords

Glyphosate-resistant soybean Glyphosate Lignin Photosynthesis 

Abbreviations

A

Net photosynthesis

cv.

Cultivar

DAE

Days after emergence

a.e.

Acid equivalent

GR

Glyphosate-resistant soybean

References

  1. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15CrossRefPubMedGoogle Scholar
  2. Arregui MC, Lenardón A, Sanchez D, Maitre MI, Scotta R, Enrique S (2003) Monitoring glyphosate residues in transgenic glyphosate-resistant soybean. Pest Manage Sci 60:163–166CrossRefGoogle Scholar
  3. Beale SI (1978) δ-Aminolevulinic acid in plants: its biosynthesis, regulation and role in plastid development. Annu Rev Plant Physiol 29:95–120CrossRefGoogle Scholar
  4. Bernards MA, Susag LM, Bedgar DL, Anterola AM, Lewis NG (2000) Induced phenylpropanoid metabolism during suberization and lignification: a comparative analysis. J Plant Physiol 157:601–607PubMedGoogle Scholar
  5. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546CrossRefPubMedGoogle Scholar
  6. Boocock MR, Coggins JR (1983) Kinetics of 5-enolpyruvylshikimate-3-phosphate synthase inhibition by glyphosate. FEBS Lett 154:127–133CrossRefPubMedGoogle Scholar
  7. Boudet AM (2000) Lignins and lignification: selected issues. Plant Physiol Biochem 38:1–16CrossRefGoogle Scholar
  8. Boudet AM, Kajita S, Grima-Pettenati J, Goffner D (2003) Lignins and lignocellulosics: a better control of synthesis for new improved uses. Trend Plant Sci 8:576–581CrossRefGoogle Scholar
  9. Cakmak I, Yazici A, Tutus Y, Ozturk L (2009) Glyphosate reduced seed and leaf concentrations of calcium, manganese, magnesium and iron in non-glyphosate resistant soybean. Euro J Agron 31:114–119CrossRefGoogle Scholar
  10. Capeleti I, Bonini EA, Ferrarese MLL, Teixeira ACN, Kryzanowski FC, Ferrarese-Filho O (2005) Lignin content and peroxidase activity in soy bean seed coat susceptible and resistant to mechanical damage. Acta Physiol Plant 27:103–108CrossRefGoogle Scholar
  11. Chen F, Reddy MSS, Temple S, Jackson L, Shadle G, Dixon RA (2006) Multi-site genetic modulation of monolignol biosynthesis suggests new routes for formation of syringyl lignin and wall-bound ferulic acid in alfafa (Medicago sativa L.). Plant J 48:113–124CrossRefPubMedGoogle Scholar
  12. Coutinho CFB, Mazo LH (2005) Metallic complex with glyphosate: a review. Quim Nova 28:1038–1045Google Scholar
  13. Devine M, Duke SO, Fedtke C (1993a) Inhibition of amino acid biosynthesis. In: Physiology of herbicide action. Prentice-Hall, New Jersey, pp 251–294Google Scholar
  14. Devine M, Duke SO, Fedtke C (1993b) Oxygen toxicity and herbicidal action; secondary physiological effects of herbicides. In: Physiology of herbicide action. Prentice-Hall, New Jersey, pp 177–188Google Scholar
  15. Donaldson LA (2001) Lignification and lignin topochemistry—an ultrastructural view. Phytochemistry 57:859–876CrossRefPubMedGoogle Scholar
  16. Duke SO, Rimando AM, Pace PF, Reddy KN, Smeda RJ (2003) Isoflavone, glyphosate, and aminomethylphosphonic acid levels in seeds of glyphosate-treated, glyphosate-resistant soybean. J Agric Food Chem 51:340–344CrossRefPubMedGoogle Scholar
  17. Ferrarese MLL, Zottis A, Ferrarese-Filho O (2002) Protein-free lignin quantification in soybean (Glycine max) roots. Biologia 57:541–543Google Scholar
  18. Franz JE, Mao MK, Sikorski JA (1997) Glyphosate: a unique global herbicide. ACS monograph 189, American Chemical Society, pp 521–615Google Scholar
  19. Gosselink RJA, de Jong E, Guran B, Abacherli A (2004) Coordination network for lignin—standardisation, production and applications adapted to market requirements (EUROLIGNIN). Ind Crops Prod 20:121–129CrossRefGoogle Scholar
  20. Hernandez A, Garcia-Plazaola JI, Bacerril JM (1999) Glyphosate effects on phenolic metabolism of nodulated soybean (Glycine max L. Merril). J Agric Food Chem 47:2920–2925CrossRefPubMedGoogle Scholar
  21. Hoagland DR, Arnon DI (1950) The water-culture method of growing plants without soil. California Agric Exper Sta Cir, n. 347Google Scholar
  22. Johal GS, Huber DM (2009) Glyphosate effects on disease and disease resistance in plants. Euro J Agron 31:144–152CrossRefGoogle Scholar
  23. Kabachnik MI, Medved TY, Dyatolva NM, Rudomino MV (1974) Organophosphorus complexones. Russian Chem Rev 43:733–744CrossRefGoogle Scholar
  24. King CA, Purcell LC, Vories ED (2001) Plant growth and nitrogenase activity of glyphosate-tolerant soybean in response to foliar glyphosate applications. Agron J 93:79–186CrossRefGoogle Scholar
  25. Kishore GM, Shah DM (1988) Amino acid biosynthesis inhibitors as herbicides. Ann Rev Biochem 57:627–663CrossRefPubMedGoogle Scholar
  26. LaRossa RA, Schloss JV (1984) The sulfonylurea herbicide sulfometuron methyl is an extremely potent and selective inhibitor of acetolactate synthase in Salmonella typhimurium. J Biol Chem 259:8753–8757PubMedGoogle Scholar
  27. Liu F, Andersen MN, Jacobsen SE, Jensen CR (2005) Stomatal control and water use efficiency of soybean (Glycine max L. Merr.) during progressive soil drying. Env Exp Bot 54:33–40CrossRefGoogle Scholar
  28. Lora JH, Glasser WG (2002) Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J Polym Environ 10:39–48CrossRefGoogle Scholar
  29. Marchiosi R, Ferrarese Filho ML, Bonini EA, Fernandes NG, Ferro AP, Ferrarese Filho O (2009) Glyphosate-induced metabolic changes in susceptible and glyphosate-resistant soybean (Glycine max L.) roots. Pest Biochem Physiol 21:155–164Google Scholar
  30. Nilsson G (1985) Interactions between glyphosate and metals essential for plant growth. In: Grossbard E, Atkinson D (eds) The herbicide glyphosate. Butterworth, London, pp 35–47Google Scholar
  31. Padgette SR, Kolacz KH, Delannay XD, La Vallee BJ, Tinius CN, Rhodes WK, Otero YI, Barry GF, Eichholtaz DA, Peschke WM, Nida DL, Taylor NB (1995) Development, identification and characterization of a glyphosate tolerant soybean line. Crop Sci 35:1451–1461CrossRefGoogle Scholar
  32. Pihakaski S, Pihakaski K (1980) Effects of glyphosate on ultrastructure and photosynthesis of Pellia epiphylla. Ann Bot 46:133–141Google Scholar
  33. Pinkard EA, Pate V, Mohammed C (2006) Chlorophyll and nitrogen determination for plantation-grown Eucaliptus nitens and E. glogulus using a non-destructive meter. Forest Ecol Manag 223:211–217CrossRefGoogle Scholar
  34. Procópio SO, Santos JB, Silva AA, Matinez CA, Werlang RC (2004) Características fisiológicas das culturas de soja e feijão e de três espécies de plantas daninhas. Planta Daninha 22:211–216Google Scholar
  35. Reddy KN, Hoagland RE, Zablotowicz RM (2000) Effect of glyphosate on growth, chlorophyll, and nodulation in glyphosate-resistant and susceptible soybean (Glycine max) varieties. J New Seeds 2:37–52CrossRefGoogle Scholar
  36. Reddy KN, Rimando AM, Duke SO (2004) Aminomethylphosphonic acid, a metabolite of glyphosate, causes injury in glyphosate-treated, glyphosate-resistant soybean. J Agric Food Chem 52:5139–5143CrossRefPubMedGoogle Scholar
  37. Rena AB, Masciotti Z (1976) Efeito do déficit hídrico sobre o metabolismo do nitrogênio e o crescimento de quatro cultivares de feijão (Phaseolus vulgaris L.). Revista Ceres 23:288–301Google Scholar
  38. Richardson AD, Duigan SP, Berlyn GP (2002) An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol 153:185–194CrossRefGoogle Scholar
  39. Saltveit ME, Mencarelli F (1988) Inhibition of ethylene synthesis and action in ripening tomato fruit by ethanol vapors. J Am Soc Hort Sci 113:742–745Google Scholar
  40. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality. Biometrika 52:591–611Google Scholar
  41. Shibles RM, Weber CR (1965) Leaf area, solar radiation interception, and dry matter production by various soybean planting patterns. Crop Sci 6:575–577CrossRefGoogle Scholar
  42. Singh BK, Siehl DL, Connelly JA (1991) Shikimate pathway: why does it mean so much to so many? Oxf Surv Plant Mol Cell Biol 7:143–185Google Scholar
  43. SPSS (2000) SysStat© for Windows, Version 10Google Scholar
  44. Taiz L, Zeiger E (1998) Mineral nutrition. In: Plant physiology. Sinauer Associates, Sunderland, pp 111–144Google Scholar
  45. Tan S, Evans R, Singh B (2006) Herbicidal inhibitors of amino acid biosynthesis and herbicide-tolerant crops. Amino Acids 30:195–204CrossRefPubMedGoogle Scholar
  46. Weaver LM, Herrmann KM (1997) Dynamics of the shikimate pathway in plants. Trends Plant Sci 2:346–351CrossRefGoogle Scholar
  47. Wong PK (2000) Effects of 2, 4-D, glyphosate and paraquat on growth, photosynthesis and chlorophyll-a synthesis of Scenedesmus quadricauda. Chemosphere 41:177–182CrossRefPubMedGoogle Scholar
  48. Zablotowicz RM, Reddy KN (2007) Nitrogenase activity, nitrogen content, and yield responses to glyphosate in glyphosate-resistant soybean. Crop Prot 26:370–376CrossRefGoogle Scholar
  49. Zobiole LHS, Oliveira Jr RS, Hubner DM, Constantin J, Castro de C, Oliveira de FA, Oliveira Jr A (2009) Glyphosate reduces shoot concentration of mineral nutrients in glyphosate-resistant soybeans. Plant Soil. doi:10.1007/s11104-009-0081-3

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2010

Authors and Affiliations

  • Luiz Henrique Saes Zobiole
    • 1
  • Edicléia Aparecida Bonini
    • 2
  • Rubem Silvério de OliveiraJr.
    • 1
  • Robert John Kremer
    • 3
  • Osvaldo Ferrarese-Filho
    • 2
  1. 1.Center for Advanced Studies in Weed Research (NAPD)State University of Maringá (UEM)MaringáBrazil
  2. 2.Department of BiochemistryUniversity of MaringáMaringáBrazil
  3. 3.United States Department of Agriculture, Agricultural Research ServiceCropping Systems and Water Quality Research UnitColumbiaUSA

Personalised recommendations