Skip to main content
Log in

Arbuscular mycorrhizal status and root phosphatase activities in vegetative Carica papaya L. varieties

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The arbuscular mycorrhizal (AM) status and root phosphatase activities were studied in four vegetative Carica papaya L. varieties viz., CO-1, CO-2, Honey Dew and Washington. Standard techniques were used to ascertain information on spore density and species diversity of AM fungi. Although in case of estimation of root colonization and root phosphatase activities, the existing methods were slightly modified. Root colonization and spore density of AM fungi along with root phosphatase (acid and alkaline) activities varied significantly in four papaya varieties. The present study recorded higher acid root phosphatase activity when compared with alkaline root phosphatase activity under P-deficient, acidic soil conditions. The present study revealed that the root colonization of AM fungi influenced acid root phosphatase activity positively and significantly under P-deficient, acidic soil conditions. A total of 11 species of AM fungi belonging to five genera viz., Acaulospora, Dentiscutata, Gigaspora, Glomus and Racocetra were recovered from the rhizosphere of four papaya varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen EB, Swenson W, Querejeta JI, Egerton-Waburton LM, Treseder KK et al (2003) Ecology of mycorrhizae: a conceptual framework for complex interactions among plants and fungi. Ann Rev Phytopathol 41:271–303

    Article  CAS  Google Scholar 

  • Allen MF, Sexton JC, Moore TS Jr, Christensen M et al (2006) Influence of phosphate source on vesicular-arbuscular mycorrhizae of Bouteloua gracilis. New Phytol 87(4):687–694

    Article  Google Scholar 

  • Barea JM (1991) Vesicular-arbuscular mycorrhizae as modifiers of soil fertility. In: Stewart BA (ed) Advances in soil science. Springer, New York, pp 1–40

    Google Scholar 

  • Beena KR, Raviraja NS, Arun AD, Sridhar KR et al (2000) Diversity of arbuscular mycorrhizal fungi on coastal sand dunes of the West Coast of India. Curr Sci 79(10):1459–1465

    CAS  Google Scholar 

  • Bethlenfalvay GJ, Linderman RG (1992) Mycorrhizae in sustainable agriculture. ASA Special Publication, Madison, p 124

    Google Scholar 

  • Bethlenfalvay GJ, Schüepp H (1994) Arbuscular mycorrhizas and agrosystem stability. In: Gianinazzi S, Scheüpp H (eds) Impact of arbuscular mycorrhiza on sustainable agriculture and natural ecosystems. ALS, Birkhäuser, Basel, pp 117–131

    Google Scholar 

  • Bonfante-Fasalo P (1984) Anatomy and morphology. In: Powell CL, Bagyaraj DJ (eds) VA mycorrhiza. CRC Press Inc, Boca Raton, pp 5–33

    Google Scholar 

  • Bray RH, Kurtz LT (1945) Determination of total organic carbon and available forms of phosphorus in soils. Soil Sci 59:39–45

    Article  CAS  Google Scholar 

  • Chauhan BS, Stewart JWB, Paul EA (1981) Effect of labile inorganic phosphate status and organic carbon additions on the microbial uptake of phosphorus in soils. Can J Soil Sci 61:373–385

    Article  CAS  Google Scholar 

  • Clarholm M, Rosengren-Brinck U (1995) Phosphorous and nitrogen fertilization of a Norway spruce forest-effect on needle concentrations and acid phosphatase activity in the humus layer. Plant Soil 175:239–249

    Article  CAS  Google Scholar 

  • Duff SMG, Sarath G, Plaxton WC (1994) The role of acid phosphatase in plant phosphorus metabolism. Physiol Plant 90:791–800

    Article  CAS  Google Scholar 

  • Fries LLM, Pacovsky RS, Safir GR, Kaminski J et al (1998) Phosphorus effect on phosphatase activity in endomycorrhizal maize. Physiol Plant 103(2):162–171

    Article  CAS  Google Scholar 

  • García-Gómez R, Chávez-Espinosa J, Mejía-Chávez A, Durán BC et al (2002) Short term effects of Glomus claroideum and Azospirillum brasilense on growth and root acid phosphatase activity of Carica papaya L. under phosphorus stress. Rev Latinoam Microbiol 44(1):31–37

    Google Scholar 

  • Gaur A, Adholeya A (1994) Estimation of VAM spores in the soil—a modified method. Mycorrhiza News 6(1):10–11

    Google Scholar 

  • Gemma JN, Koske RE, Carreiro M et al (1989) Seasonal dynamics of selected species of VA mycorrhizal fungi in a sand dune. Mycol Res 92:317–321

    Article  Google Scholar 

  • Gerdemann JW, Nicolson TH (1963) Spore density of Endogone species extracted from soil wet sieving and decanting. Trans Bri Mycol Soc 46:235–244

    Article  Google Scholar 

  • Gianinazzi S, Trouvelot A, Gianiazzi-Pearson V et al (1990) Role and use of mycorrhizas in horticulture crop production. XXII. International Horticulture Congress Florence, pp 25–30

  • Gilmore AE (1968) Phycomycetous mycorrhizal organisms collected by open pot cultures. Hilgardia 39:87–105

    Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Goldstein AH, Baertlein DA, Mcdaniel RG (1988) Phosphate starvation inducible metabolism in Lycopersicon esculentum. I. Excretion of acid phosphatase by tomato plants and suspension-cultured cells. Plant Physiol 87:711–715

    Article  CAS  PubMed  Google Scholar 

  • Hanway JJ, Heidel H (1952) Soil analysis method as used in Iowa State College Soil Testing Laboratory. Iowa Agric 57:1–31

    Google Scholar 

  • Helal HM (1990) Varietal differences in root phosphatase activity as related to the utilization of organic phosphates. Plant Soil 123:161–163

    Article  CAS  Google Scholar 

  • Helal HM, Sauerbeck DR (1984) Influence of plant roots on carbon and phosphorus metabolism in soil. Plant Soil 76:175–182

    Article  CAS  Google Scholar 

  • Helal HM, Sauerbeck DR (1987) Direct and indirect influences of plant roots on organic matter and phosphorus turnover in soil. INTECOL Bull 15:49–58

    Google Scholar 

  • Huttová J, Tamás L, Mistrík I (2002) Aluminum induced acid phosphatase activity in roots of Al-sensitive and Al-tolerant barley varieties. Rostlinná Výroba 48(12):556–559

    Google Scholar 

  • Jackson ML (1971) Soil chemical analysis. Prentice Hall, New Delhi

    Google Scholar 

  • Joner EJ, Van Aarle IM, Vosatka M et al (2000) Phosphatase activity of extra- radical arbuscular mycorrhizal hyphae: a review. Plant Soil 226:199–210

    Article  CAS  Google Scholar 

  • Kapoor A, Singh VP, Mukerji KG (1989) Studies on the phosphatase of mycorrhizal and non mycorrhizal Trigonella roots. In: Mahadeva A, Raman A, Natarajan K et al (eds) Mycorrhizae for Green Asia. CAS, Madras, pp 125–127

    Google Scholar 

  • Karangiannidis N, Velmis D, Stravropoulos N et al (1997) Root colonization and spore population by VA-mycorrhizal fungi in four grapevine rootstock. Vitis 36(2):57–60

    Google Scholar 

  • Kesava Rao PS, Tilak KVBR, Arunachalam V et al (1990) Genetic variation of mycorrhiza-dependent phosphate mobilization in ground nut (Arachis hypogea L.). Plant Soil 121:291–294

    Google Scholar 

  • Khade SW, Rodrigues BF (2002) Arbuscular mycorrhizal fungi associated with some pteridophytes from Western Ghat region of Goa. Trop Eco 43(2):251–256

    Google Scholar 

  • Khade SW, Rodrigues BF (2003) Occurrence of arbuscular mycorrhizal fungi in tree species from Western Ghats of Goa India. J Trop For Sci 15(2):320–331

    Google Scholar 

  • Khade SW, Rodrigues BF (2008a) Ecology of arbuscular mycorrhizal fungi associated with Carica papaya L. in agro-based ecosystem of Goa, India. Trop Subtrop Agroecosyst 8:265–278

    Google Scholar 

  • Khade SW, Rodrigues BF (2008b) Spatial variations in arbuscular mycorrhizal (AM) fungi associated with Carica papaya L. in a tropical agro-based ecosystem. Bio Agric Hort 26:149–174

    Google Scholar 

  • Khade SW, Rodrigues BF (2009) Arbuscular mycorrhizal fungi associated with varieties of Carica papaya L. in tropical agro-based ecosystem of Goa, India. Trop Subtrop Agroecosyst 10(3):369–381

    Google Scholar 

  • Khade SW, Bukhari MJ, Jaiswal V, Gaonkar UC, Rodrigues BF et al (2002) Arbuscular mycorrhizal status of medicinal plants: a field survey of AM fungal association in shrubs and trees. J Eco Tax Bot 26(3):571–578

    Google Scholar 

  • Koske RE (1987) Distribution of VA mycorrhizal fungi along a latitudinal temperature gradient. Mycologia 79:55–68

    Article  Google Scholar 

  • Koske RE, Tessier B (1983) A convenient permanent slide mounting medium. Mycol Soc Am Newslett 34:59

    Google Scholar 

  • Krishna KR, Bagyaraj DJ, Papavinashasundaram KG et al (1983) Acid and alkaline phosphatase activities in mycorrhizal and uninfected roots of Arachis hypogaea L. Ann Bot 51:551–553

    CAS  Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of DPTA soil test for zinc, iron, manganese and copper. Am Soil Sci Soc J 42:421–488

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Fan AL, Randall RJ et al (1951) Protein measurement with the Folin-phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Machado CTT, Furlani AMC (2004) Root phosphatase activity, plant growth and phosphorus accumulation of maize genotypes. Sci Agric 61(2):216–223

    Article  CAS  Google Scholar 

  • Mc Gonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA et al (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • McArthur DAJ, Knowles NR (1993) Influence of vesicular-arbuscular mycorrhizal fungi on the response of potato to phosphorus deficiency. Plant Physiol 101(1):147–160

    CAS  PubMed  Google Scholar 

  • McLachlan KE (1980) Acid phosphate activity of intact roots and phosphorous nutrition in plants II: variation among wheat roots. Aust J Agric Res 31:441–448

    Article  CAS  Google Scholar 

  • Menge JA (1982) Utilization of vesicular arbuscular mycorrhizal fungi in agriculture. Can J Bot 61:1015–1024

    Article  Google Scholar 

  • Mercy MA, Shivashanker G, Bagyaraj DJ et al (1990) Mycorrhizal colonization in cowpea is dependent and heritable. Plant Soil 121:291–294

    Article  Google Scholar 

  • Mosse B (1975) A microbiologist’s view of root anatomy. In: Walker N (ed) Soil microbiology: a critical review. Butterworths, London, pp 39–66

    Google Scholar 

  • Muthukumar T, Udaiyan K (2002) Arbuscular mycorrhizal fungal composition in semi-arid soils of Western Ghats, southern India. Curr Sci 82(6):625–628

    Google Scholar 

  • Oehl F, de Souza FA, Sieverding E (2008) Revision of Scutellospora and description of five new genera and three new families in the arbuscular mycorrhiza-forming Glomeromycetes. Mycotaxon 106:311–360

    Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedure for clearing roots and staining of mycorrhizal fungi for rapid assessment of infection. Trans Bri Mycol Soc 55:158–161

    Article  Google Scholar 

  • Raju PS, Clark RB, Duncan JR, Maranville JW et al (1990) Benefit and cost analysis and phosphorus efficiency of VA-mycorrhizal fungi colonization with Sorghum (Sorghum bicolor) genotypes grown at varied phosphorus levels. Plant Soil 124:199–204

    Article  CAS  Google Scholar 

  • Rhodes LH, Gerdemann JW (1975) Phosphate uptake zones of mycorrhizal and non-mycorrhizal onions. New Phytol 75:555–561

    Article  Google Scholar 

  • Rubio R, Moraga E, Borie F et al (1990) Acid phosphatase activity and vesicular-arbuscular mycorrhizal infection associated with roots of 4 wheat cultivars. J Plant Nutr 13(5):585–598

    Article  CAS  Google Scholar 

  • Schalamuk S, Velazquez H, Cabello CM et al (2006) Fungal spore diversity of arbuscular mycorrhizal fungi associated with spring wheat: effects of tillage. Mycologia 98(1):16–22

    Article  CAS  PubMed  Google Scholar 

  • Schenck NC, Perez Y (1990) Manual for identification of VA mycorrhizal fungi. INVAM, University of Florida, Gainesville, USA, pp 1–283

  • Smith SE, Walker NA (1981) A qualitative study of mycorrhizal plants in Trifolium: separate determination of the rates of infection and of mycelial growth. New Phytol 89:225–240

    Article  Google Scholar 

  • Speir TW, Ross DJ (1978) Soil phosphatase and sulphatase. In: Burns RG (ed) Soil enzymes. Academic Press, New York, USA, pp 197–250

    Google Scholar 

  • St. John TV, Koske RE (1988) Statistical treatment of endogonaceous spore counts. Trans Bri Mycol Soc 91:117–121

    Article  Google Scholar 

  • Sukhada M (1992) Effect of VAM inoculation on plant growth, nutrient level and root phosphatase activity in papaya (Carica papaya cv. Coorg Honey Dew). Fert Res 31:263–267

    Article  Google Scholar 

  • Sylvia DM (1986) Spatial and temporal distribution of vesicular-arbuscular mycorrhizal fungi associated with Uniola paniculata in Florida foredunes. Mycologia 78:728–734

    Article  Google Scholar 

  • Tews LL, Koske RE (1986) Towards a sampling strategy for vesicular arbuscular mycorrhizas. Trans Bri Mycol Soc 87(8):353–358

    Article  Google Scholar 

Download references

Acknowledgments

Shri Waman M. Khade Ex-director of Agriculture Department and Directorate of Agriculture, State Government of Goa are thanked for their assistance to carry out research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharda W. Khade.

Additional information

Communicated by W. Filek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khade, S.W., Rodrigues, B.F. & Sharma, P.K. Arbuscular mycorrhizal status and root phosphatase activities in vegetative Carica papaya L. varieties. Acta Physiol Plant 32, 565–574 (2010). https://doi.org/10.1007/s11738-009-0433-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-009-0433-x

Keywords

Navigation