Skip to main content
Log in

The effect of zinc on the growth and physiological and biochemical parameters in seedlings of Eruca sativa (L.) (Rocket)

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Eruca sativa seedlings were treated with different Zn concentrations (0, 250, 500, 1,000, 2,000 μg g−1 dried growth medium) under controlled conditions. The seedlings were harvested 20 days after Zn treatment. Physiological parameters, such as root and shoot length, fresh and dry weight, were measured and Zn content of roots and shoots was determined. Furthermore, various biochemical parameters were studied on E. sativa leaves: enzymatic antioxidants, such as superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (POD), ascorbate peroxidase (APX), and non-enzymatic antioxidants, such as ascorbate, non-protein thiols. Malondialdehyde, which is an index of lipid peroxidation, was assayed. Zn treatment did not have any significant effect on fresh and dry weights, whereas 500 μg g−1 Zn increased root growth significantly (p < 0.05). Zn accumulated in roots 2–8 times more than it did in leaves. Lipid peroxidation increased in proportion with the increase in Zn. Although a decrease in SOD and CAT activities at increased Zn was found, a significant increase in APX and POD was observed at 500 and 1,000 μg g−1 Zn, respectively. In addition, an increase in the amounts of non-protein thiols and total AsA (Ascorbate) was observed with the increase in Zn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism oxidative stress, and signaling transduction. Annu Rev Plant Biol 55:373–399. doi:10.1146/annurev.arplant.55.031903.141701

    Article  CAS  PubMed  Google Scholar 

  • Bonnet M, Camares O, Veisseire P (2000) Effects of zinc and influence of Acremonium lolii on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass (Lolium perene L. cv. Apollo). J Exp Bot 51(346):945–953. doi:10.1093/jexbot/51.346.945

    Article  CAS  PubMed  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702. doi:10.1111/j.1469-8137.2007.01996.x

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I (2000) Tansley review no 111: possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205. doi:10.1046/j.1469-8137.2000.00630.x

    Article  CAS  Google Scholar 

  • Cakmak I, Marschner H (1988) Enhanced superoxide radical production in roots of zinc-deficient plants. J Exp Bot 39:1449–1460. doi:10.1093/jxb/39.10.1449

    Article  Google Scholar 

  • Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathion reductase in bean leaves. Plant Physiol 98:1222–1227. doi:10.1104/pp.98.4.1222

    Article  CAS  PubMed  Google Scholar 

  • Candan N, Tarhan L (2003) Changes in chlorophyll-carotenoid contents, antioxidative enzyme activities and lipid peroxidation levels in Zn-stressed Mentha pulegium. Turk J Chem 27:21–30

    CAS  Google Scholar 

  • Chaoui A, Mazhoudi S, Ghorbal MH, Ferjani EE (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci 127:139–147. doi:10.1016/S0168-9452(97)00115-5

    Article  CAS  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832. doi:10.1104/pp.123.3.825

    Article  CAS  PubMed  Google Scholar 

  • Cuypers A, Vangronsveld J, Clijsters H (2001) The redox status of plant cells (AsA and GSH) is sensitive to zinc imposed oxidative stress in roots and primary leaves of Phaseolus vulgaris. Plant Physiol Biochem 39:657–664. doi:10.1016/S0981-9428(01)01276-1

    Article  CAS  Google Scholar 

  • Cuypers A, Vangronsveld J, Clijsters H (2002) Peroxidases in roots and primary leaves of Phaseolus vulgaris copper and zinc phytotoxicity: a comparison. J Plant Physiol 159:869–876. doi:10.1078/0176-1617-00676

    Article  CAS  Google Scholar 

  • del Río LA, Sevilla F, Sandalio LM, Palma JM (1991) Nutritional effect and expression of SODs: induction and gene expression; diagnostics; prospective protection against oxygen toxicity. Free Radic Res Commun 12–13(Pt 2):819–827

    Article  PubMed  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  • Gayor A, Srivastava PS, Iqbal M (1999) Morphogenic and biochemical responses of Bacopa monniera cultures to zinc toxicity. Plant Sci 143:187–193. doi:10.1016/S0168-9452(99)00032-1

    Article  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Khudsar T, Mahmooduzzaffar-Iqbal M, Sairam RK (2004) Zinc induced changes in morpho-physiological and biochemical parameters in Artemisia annua. Biol Plant 48(2):255–260. doi:10.1023/B:BIOP.0000033453.24705.f5

    Article  CAS  Google Scholar 

  • Law MY, Charles SA, Halliwell B (1983) Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. Biochem J 210:899–903

    CAS  PubMed  Google Scholar 

  • Lowry OH, Rosenbrough JJ, Farr AL, Randall RJ (1951) Estimation of protein with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Luo Y, Rimmer DL (1995) Zinc–copper interaction affecting plant growth on a metal-contaminated soils. Environ Pollut 88:79–83. doi:10.1016/0269-7491(95)91050-U

    Article  PubMed  Google Scholar 

  • Madamanchi NR, Donahue J, Cramer CL, Alscher RG, Pedersen K (1984) Differential response of Cu, Zn superoxide dismutases in two pea cultivars during a short term exposure to sulphur dioxide. Plant Mol Biol 26:95–103

    Article  Google Scholar 

  • Madhava Rao KV, Srestry TVS (2000) Antioxidative parameters in the seedlings of pigeon pea (Cacanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci 157:113–128. doi:10.1016/S0168-9452(00)00273-9

    Article  CAS  PubMed  Google Scholar 

  • Mitler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410. doi:10.1016/S1360-1385(02)02312-9

    Article  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Okamura M (1980) An improved method for determination of L-ascorbic acid and L-dehydroascorbic acid in blood plasma. Clin Chim Acta 103:259. doi:10.1016/0009-8981(80)90144-8

    Article  CAS  PubMed  Google Scholar 

  • Ozdener Y, Kutbay HG (2009) Toxicity of copper, cadmium, nickel, lead and zinc on seed germination and seedling growth in Eruca sativa. Fres Environ Bull 18(1):26–31

    CAS  Google Scholar 

  • Panda SK, Khan MK (2004) Changes in growth and superoxide dismutase activity in Hydrilla verticillata L. under abiotic stress. Braz J Plant Physiol 16(2):115–118

    Article  CAS  Google Scholar 

  • Polle A, Otter T, Siefert F (1994) Apoplastic peroxidases and lignification in needless of Norway spruce (Picea abies L.). Plant Physiol 106:53–60. doi:10.1104/pp.106.1.53

    CAS  PubMed  Google Scholar 

  • Qiu RL, Zhao X, Tang YT, Yu FM, Hu PJ (2008) Antioxidative response to Cd in a newly discovered cadmium hyperaccumulator, Arabis paniculata F. Chemosphere 74:6–12. doi:10.1016/j.chemosphere.2008.09.069

    Article  CAS  PubMed  Google Scholar 

  • Reichman SM, Asher CJ, Mulligan DR, Menzies NW (2001) Seedling responses of three Australian tree species to toxic concentrations of zinc in solution culture. Plant Soil 235:151–158. doi:10.1023/A:1011903430385

    Article  CAS  Google Scholar 

  • Rengel Z (2000) Ecotypes of Holcus lanatus tolerant to zinc toxicity also tolerate zinc deficiency. Ann Bot 86:1119–1126. doi:10.1006/anbo.2000.1282

    Article  CAS  Google Scholar 

  • Rout GR, Das P (2003) Effect of metal toxicity on plant growth and metabolism: I. Zinc. Agronomie 23:3–11. doi:10.1051/agro:2002073

    Article  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gómez M, Romero-Puertas MC, del Rio LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52(364):2115–2126. doi:10.1093/jexbot/52.364.2115

    CAS  PubMed  Google Scholar 

  • Sharma PN, Kumar P, Tewari RK (2004) Early signs of oxidative stress in wheat plants subjected to zinc deficiency. J Plant Nutr 27:449–461. doi:10.1081/PLN-120028873

    Article  Google Scholar 

  • Singh S, Sinha S (2005) Accumulation of metals and its effects in Brassica juncea (L.) Czern. (cv. Rohini) grown on various amendments of tannery waste. Ecotoxicol Environ Safety 62:118–127. doi:10.1016/j.ecoenv.2004.12.026

    Article  CAS  PubMed  Google Scholar 

  • Słomka A, Konieczny ML, Kuta E, Miszalski Z (2008) Metalliferous and non-metalliferous populations of Viola tricolor represent similar mode of antioxidative response. J Plant Physiol. doi:10.1016/j.jplph.2007.11.004

  • Smeets K, Cuypers A, Lambrechts A, Semane B, Hoet P, Laere AV, Vangronsveld J (2005) Induction of oxidative stress and antioxidative mechanisms in Phaseolus vulgaris after Cd application. Plant Physiol Biochem 43:437–444. doi:10.1016/j.plaphy.2005.03.007

    Article  CAS  PubMed  Google Scholar 

  • Souza JF, Dolder H, Cortelazzo AL (2005) Effect of excess cadmium and zinc ions on roots and shoots of maize seedlings. J Plant Nutr 28:1923–1931. doi:10.1080/01904160500310435

    Article  CAS  Google Scholar 

  • Tiryakioglu M, Eker S, Ozkutlu F, Husted S, Cakmak I (2006) Antioxidant defence system and cadmium uptake in barley genotypes differing in cadmium tolerance. J Trace Elem Med Biol 20(3):181–189. doi:10.1016/j.jtemb.2005.12.004

    Article  CAS  PubMed  Google Scholar 

  • Vaillant N, Monnet F, Hitmi A, Sallanon H, Coudret A (2005) Comparative study of responses in four Datura species to a zinc stress. Chemosphere 59:1005–1013. doi:10.1016/j.chemosphere.2004.11.030

    Article  CAS  PubMed  Google Scholar 

  • Van de Mortel JE, Villanueva LA, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, Van Themaat EVL, Koornneef M, Aarts MGM (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142:1127–1147. doi:10.1104/pp.106.082073

    Article  PubMed  Google Scholar 

  • Wang C, Zhang SH, Wang PF, Hou J, Zhang WJ, Li W, Lin ZP (2009) The effect of excess Zn on mineral nutrition and antioxidative response in rapeseed seedlings. doi:10.1016/j.chemosphere.2009.02.033

  • Weckx JEJ, Clijsters HMM (1997) Zn phytotoxicity induces oxidative stress in primary leaves of Phaseolus vulgaris. Plant Physiol Biochem 35(5):405–410

    CAS  Google Scholar 

  • Willamil JMP, Pèrez-Garcìa F, Martìnez Laborde JM (2002) Time of seed collection and germination in rocket. Eruca vesicaria (L.) cav. (Brassicaceae). Genet Resour Crop Evol 45:47–51

    Google Scholar 

  • Wόjcik M, Skόrzyńska-Polit E, Tukiendorf A (2006) Organic acids accumulation and antioxidative enzyme activities in Thlaspi caerulescens under Zn and Cd stress. J Plant Growth Regul 48:145–155

    Article  Google Scholar 

  • Zhou ZS, Huang SQ, Guo K, Mehta SK, Zhang PC, Yang ZM (2007) Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. J Inorg Biochem 101:1–9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Ondokuz Mayis University Scientific Research Foundation (Project Number: F- 387). The authors acknowledge the financial support of Ondokuz Mayis University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasemin Ozdener.

Additional information

Communicated by G. Bartosz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozdener, Y., Aydin, B.K. The effect of zinc on the growth and physiological and biochemical parameters in seedlings of Eruca sativa (L.) (Rocket). Acta Physiol Plant 32, 469–476 (2010). https://doi.org/10.1007/s11738-009-0423-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-009-0423-z

Keywords

Navigation