Skip to main content
Log in

Elevated CO2 ameliorated oxidative stress induced by elevated O3 in Quercus mongolica

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Using open top chambers, the effects of elevated O3 (80 nmol mol−1) and elevated CO2 (700 μmol mol−1), alone and in combination, were studied on young trees of Quercus mongolica. The results showed that elevated O3 increased malondialdehyde content and decreased photosynthetic rate after 45 days of exposure, and prolonged exposure (105 days) induced significant increase in electrolyte leakage and reduction of chlorophyll content. All these changes were alleviated by elevated CO2, indicating that oxidative stress on cell membrane and photosynthesis was ameliorated. After 45 days of exposure, elevated O3 stimulated activities of superoxide dismutase (SOD, EC 1.15.1.1) and ascorbate peroxidase (APX, EC 1.11.1.11), but the stimulation was dampened under elevated CO2 exposure. Furthermore, ascorbate (AsA) and total phenolics contents were not higher in the combined gas treatment than those in elevated O3 treatment. It indicates that the protective effect of elevated CO2 against O3 stress was achieved hardly by enhancing ROS scavenging ability after 45 days of exposure. After 105 days of exposure, elevated O3 significantly decreased activities of SOD, catalase (CAT, EC 1.11.1.6) and APX and AsA content. Elevated CO2 suppressed the O3-induced decrease, which could ameliorate the oxidative stress in some extent. In addition, elevated CO2 increased total phenolics content in the leaves both under ambient O3 and elevated O3 exposure, which might contribute to the protection against O3-induced oxidative stress as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AOT40:

Accumulated ozone exposure over 40 nmol mol−1

APX:

Ascorbate peroxidase

AsA:

Ascorbate

CAT:

Catalase

Ci:

Intercellular CO2 concentration

EL:

Electrolyte leakage

Gs:

Stomatal conductance

H2O2 :

Hydrogen peroxide

–OH:

Hydroxyl radical

MDA:

Malondialdehyde

OTCs:

Open top chambers

Pn:

Photosynthetic rate

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

O ·−2 :

Superoxide anion radical

References

  • Baier M, Kandlbinder A, Golldack D, Dietz KJ (2005) Oxidative stress and ozone: perception, signalling and response. Plant Cell Environ 28:1012–1020. doi:10.1111/j.1365-3040.2005.01326.x

    Article  CAS  Google Scholar 

  • Beyer WF, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161:559–566. doi:10.1016/0003-2697(87)90489-1

    Article  PubMed  CAS  Google Scholar 

  • Booker FL, Fiscus EL (2005) The role of ozone flux and antioxidants in the suppression of ozone injury by elevated CO2 in soybean. J Exp Bot 56:2139–2151. doi:10.1093/jxb/eri214

    Article  PubMed  CAS  Google Scholar 

  • Broadmeadow MSJ, Jackson SB (2000) Growth responses of Quercus petraea, Fraxinus excelsior and Pinus sylvestris to elevated carbon dioxide, ozone and water supply. New Phytol 146:437–451. doi:10.1111/j.1469-8137.2000.00665.x

    Article  CAS  Google Scholar 

  • Cabane M, Pireaux JC, Leger E, Weber E, Dizengremel P, Pollet B, Lapierre C (2004) Condensed lignins are synthesized in poplar leaves exposed to ozone. Plant Physiol 134:586–594. doi:10.1104/pp.103.031765

    Article  PubMed  CAS  Google Scholar 

  • Calatayud A, Ramirez JW, Iglesias DJ, Barreno E (2002) Effects of ozone on photosynthetic CO2 exchange, chlorophyll a fluorescence and antioxidant systems in lettuce leaves. Physiol Plant 116:308–316. doi:10.1034/j.1399-3054.2002.1160305.x

    Article  CAS  Google Scholar 

  • Chen GY, Yong ZH, Liao Y, Zhang DY, Chen Y, Zhang HB, Chen J, Zhu JG, Xu DQ (2005) Photosynthetic acclimation in rice leaves to free-air CO2 enrichment related to both ribulose-1, 5-bisphosphate carboxylation limitation and ribulose-1, 5-bisphosphate regeneration limitation. Plant Cell Physiol 46:1036–1045. doi:10.1093/pcp/pci113

    Article  PubMed  CAS  Google Scholar 

  • Chernikova T, Robinson JM, Lee EH, Mulchi CL (2000) Ozone tolerance and antioxidant enzyme activity in soybean cultivars. Photosynth Res 64:15–26

    Article  PubMed  CAS  Google Scholar 

  • Conklin PL, Williams EH, Last RL (1996) Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc Natl Acad Sci USA 93:9970–9974

    Article  PubMed  CAS  Google Scholar 

  • Darbah JNT, Kubiske ME, Nelson N, Oksanen E, Vapaavuori E, Kamosky DF (2008) Effects of decadal exposure to interacting elevated CO2 and/or O3 on paper birch (Betula papyrifera) reproduction. Environ Pollut 155:446–452. doi:10.1016/j.envpol.2008.01.033

    Article  PubMed  CAS  Google Scholar 

  • Davey MW, Dekempeneer E, Keulemans J (2003) Rocket-powered high-performance liquid chromatographic analysis of plant ascorbate and glutathione. Anal Biochem 316:74–81. doi:10.1016/S0003-2697(03)00047-2

    Article  PubMed  CAS  Google Scholar 

  • Di Baccio D, Castagna A, Paoletti E, Sebastiani L, Ranier A (2008) Could the differences in O3 sensitivity between two poplar clones be related to a difference in antioxidant defense and secondary metabolic response to O3 influx? Tree Physiol 28:1761–1772

    PubMed  CAS  Google Scholar 

  • Drake BG, Gonzalez-Meler MA, Long SP (1997) More efficient plants: a consequence of rising atmospheric CO2? Annu Rev Plant Physiol Plant Mol Biol 48:609–639. doi:10.1146/annurev.arplant.48.1.609

    Article  PubMed  CAS  Google Scholar 

  • Farage PK, Long SP (1999) The effects of O3 fumigation during leaf development on photosynthesis of wheat and pea: an in vivo analysis. Photosynth Res 59:1–7. doi:10.1023/A:1006161724099

    Article  CAS  Google Scholar 

  • Felzer BS, Cronin T, Reilly JM, Melilloa JM, Wang XD (2007) Impacts of ozone on trees and crops. C R Geosci 339:784–798. doi:10.1016/j.crte.2007.08.008

    Article  CAS  Google Scholar 

  • Fowler D, Cape JN, Coyle M, Flechard C, Kuylenstierna J, Hicks K, Derwent D, Johnson C, Stevenson D (1999) The global exposure of forests to air pollutants. Water Air Soil Pollut 116:5–32. doi:10.1023/A:1005249231882

    Article  CAS  Google Scholar 

  • Francini A, Nali C, Picchi V, Lorenzini G (2007) Metabolic changes in white clover clones exposed to ozone. Environ Exp Bot 60:11–19. doi:10.1016/j.envexpbot.2006.06.004

    Article  CAS  Google Scholar 

  • Gaucher C, Costanzo N, Afif D, Mauffette Y, Chevrier N, Dizengremel P (2003) The impact of elevated ozone and carbon dioxide on young Acer saccharum seedlings. Physiol Plant 117:392–402. doi:10.1034/j.1399-3054.2003.00046.x

    Article  PubMed  CAS  Google Scholar 

  • Gebauer RLE, Strain BR, Reynolds JP (1998) The effect of elevated CO2 and N availability on tissue concentrations and whole plant pools of carbon-based secondary compounds in loblolly pine (Pinus taeda). Oecologia 113:29–36. doi:10.1007/s004420050350

    Article  Google Scholar 

  • Grace SC (2005) Phenolics as antioxidants. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell, Oxford, pp 141–168

    Chapter  Google Scholar 

  • Grams TEE, Anegg S, Haberle KH, Langebartels C, Matyssek R (1999) Interactions of chronic exposure to elevated CO2 and O3 levels in the photosynthetic light and dark reactions of European beech (Fagus sylvatica). New Phytol 144:95–107. doi:10.1046/j.1469-8137.1999.00486.x

    Article  CAS  Google Scholar 

  • He XY, Huang W, Chen W, Dong T, Liu CB, Chen ZJ, Xu S, Ruan YN (2009) Changes of main secondary metabolites in leaves of Ginkgo biloba in response to ozone fumigation. J Environ Sci (China) 21:199–203. doi:10.1016/S1001-0742(08)62251-2

    CAS  Google Scholar 

  • Heagle AS, Body DE, Heck WW (1973) An open-top field chamber to assess the impact of air pollution on plants. J Environ Qual 2:365–368

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198. doi:10.1016/0003-9861(68)90523-7

    Google Scholar 

  • Huang JG, Bergeron Y, Denneler B, Berninger F, Tardif J (2007) Response of forest trees to increased atmospheric CO2. Crit Rev Plant Sci 26:265–283. doi:10.1080/07352680701626978

    Article  CAS  Google Scholar 

  • IPCC (2007) Climate change 2007: the scientific basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Iriti M, Faoro F (2008) Oxidative stress, the paradigm of ozone toxicity in plants and animals. Water Air Soil Pollut 187:285–301. doi:10.1007/s11270-007-9517-7

    Article  CAS  Google Scholar 

  • Isebrands JG, McDonald EP, Kruger E, Hendrey G, Percy K, Pregitzer K, Sober J, Karnosky DF (2001) Growth responses of Populus tremuloides clones to interacting elevated carbon dioxide and tropospheric ozone. Environ Pollut 115:359–371. doi:10.1016/S0269-7491(01)00227-5

    Article  CAS  Google Scholar 

  • Karnosky DF (2003) Impacts of elevated atmospheric CO2 on forest trees and forest ecosystems: knowledge gaps. Environ Int 29:161–169. doi:10.1016/S0160-4120(02)00159-9

    Article  PubMed  CAS  Google Scholar 

  • Karnosky DF, Podila GK, Gagnon Z, Pechter P, Akkapeddi A, Sheng Y, Riemenschneider DE, Coleman MD, Dickson RE, Isebrands JG (1998) Genetic control of responses to interacting tropospheric ozone and CO2 in Populus tremuloides. Chemosphere 36:807–812. doi:10.1016/S0045-6535(97)10128-X

    Article  Google Scholar 

  • Karnosky DF, Skelly JM, Percy KE, Chappelka AH (2007) Perspectives regarding 50 years of research on effects of tropospheric ozone air pollution on US forests. Environ Pollut 147:489–506. doi:10.1016/j.envpol.2006.08.043

    Article  PubMed  CAS  Google Scholar 

  • Kellomaki S, Wang KY (1997) Effects of elevated O3 and CO2 concentrations on photosynthesis and stomatal conductance in Scots pine. Plant Cell Environ 20:995–1006. doi:10.1111/j.1365-3040.1997.tb00676.x

    Article  CAS  Google Scholar 

  • Knorzer OC, Durner J, Boger P (1996) Alterations in the antioxidative system of suspension-cultured soybean cells (Glycine max) induced by oxidative stress. Physiol Plant 97:388–396. doi:10.1111/j.1399-3054.1996.tb08872.x

    Article  Google Scholar 

  • Koch JR, Scherzer AJ, Eshita SM, Davis KR (1998) Ozone sensitivity in hybrid poplar is correlated with a lack of defense-gene activation. Plant Physiol 118:1243–1252

    Article  CAS  Google Scholar 

  • Krivosheeva A, Tao DL, Ottander C, Wingsle G, Dube SL, Oquist G (1996) Cold acclimation and photoinhibition of photosynthesis in Scots pine. Planta 200:296–305. doi:10.1007/BF00200296

    Article  CAS  Google Scholar 

  • Kull O, Sober A, Coleman MD, Dickson RE, Isebrands JG, Gagnon Z, Karnosky DF (1996) Photosynthetic responses of aspen clones to simultaneous exposures of ozone and CO2. Can J Forest Res 26:639–648

    Article  CAS  Google Scholar 

  • Kurz C, Schmieden U, Strobel P, Wild A (1998) The combined effect of CO2, ozone, and drought on the radical scavenging system of young oak trees (Quercus petraea): a phytothron study. Chemosphere 36:783–788. doi:10.1016/S0045-6535(97)10124-2#

    Article  CAS  Google Scholar 

  • Kytoviita MM, Pelloux J, Fontaine V, Botton B, Dizengremel P (1999) Elevated CO2 does not ameliorate effects of ozone on carbon allocation in Pinus halepensis and Betula pendula in symbiosis with Paxillus involutus. Physiol Plant 106:370–377. doi:10.1034/j.1399-3054.1999.106403.x

    Article  CAS  Google Scholar 

  • Leitao L, Maoret JJ, Biolley JP (2007) Changes in PEP carboxylase, rubisco and rubisco activase mRNA levels from maize (Zea mays) exposed to a chronic ozone stress. Biol Res 40:137–153

    Article  PubMed  CAS  Google Scholar 

  • Leitao L, Dizengremel P, Biolley JP (2008) Foliar CO2 fixation in bean (Phaseolus vulgaris L.) submitted to elevated ozone: distinct changes in Rubisco and PEPc activities in relation to pigment content. Ecotoxicol Environ Saf 69:531–540. doi:10.1016/j.ecoenv.2006.10.010

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592

    CAS  Google Scholar 

  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants face the future. Annu Rev Plant Biol 55:591–628. doi:10.1146/annurev.arplant.55.031903.141610

    Article  PubMed  CAS  Google Scholar 

  • Lutz C, Anegg S, Gerant D, Alaoui-Sosse B, Gerard J, Dizengremel P (2000) Beech trees exposed to high CO2 and to simulated summer ozone levels: effects on photosynthesis, chloroplast components and leaf enzyme activity. Physiol Plant 109:252–259. doi:10.1034/j.1399-3054.2000.100305.x

    Article  CAS  Google Scholar 

  • Matsumura H (2001) Impacts of ambient ozone and/or acid mist on the growth of 14 tree species: an open top chamber study conducted in Japan. Water Air Soil Pollut 130:959–964. doi:10.1023/A:1013919221030

    Article  Google Scholar 

  • McKee IF, Eiblmeier M, Polle A (1997) Enhanced ozone-tolerance in wheat grown at an elevated CO2 concentration: ozone exclusion and detoxification. New Phytol 137:275–284. doi:10.1111/j.1469-8137.1997.tb01220.x

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410. doi:10.1016/S1360-1385(02)02312-9

    Article  PubMed  CAS  Google Scholar 

  • Montillet JL, Cacas JL, Garnier L, Montane MH, Douki T, Bessoule JJ, Polkowska-Kowalczyk L, Maciejewska U, Agnel JP, Vial A, Triantaphylides C (2004) The upstream oxylipin profile of Arabidopsis thaliana: a tool to scan for oxidative stresses. Plant J 40:439–451. doi:10.1111/j.1365-313X.2004.02223.x

    Article  PubMed  CAS  Google Scholar 

  • Nali C, Paoletti E, Marabottini R, Della Rocca G, Lorenzini G, Paolacci AR, Ciaffi M, Badiani M (2004) Ecophysiological and biochemical, strategies of response to ozone in Mediterranean evergreen broadleaf species. Atmos Environ 38:2247–2257. doi:10.1016/j.atmosenv.2003.11.043

    Article  CAS  Google Scholar 

  • Niewiadomska E, Gaucher-Veilleux C, Chevrier N, Mauffette Y, Dizengremel P (1999) Elevated CO2 does not provide protection against ozone considering the activity of several antioxidant enzymes in the leaves of sugar maple. J Plant Physiol 155:70–77

    CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279. doi:10.1146/annurev.arplant.49.1.249

    Article  PubMed  CAS  Google Scholar 

  • Paoletti E, Seufert G, Della Rocca G, Thomsen H (2007) Photosynthetic responses to elevated CO2 and O3 in Quercus ilex leaves at a natural CO2 spring. Environ Pollut 147:516–524. doi:10.1016/j.envpol.2006.08.039

    Article  PubMed  CAS  Google Scholar 

  • Pell EJ, Eckardt N, Enyedi AJ (1992) Timing of ozone stress and resulting status of ribulose bisphosphatase carboxylase/oxygenase and associated net photosynthesis. New Phytol 120:397–405. doi:10.1111/j.1469-8137.1992.tb01080.x

    Article  CAS  Google Scholar 

  • Peltonen PA, Vapaavuori E, Julkunen-tiitto R (2005) Accumulation of phenolic compounds in birch leaves is changed by elevated carbon dioxide and ozone. Global Change Biol 11:1305–1324. doi:10.1111/j.1365-2486.2005.00979.x

    Article  Google Scholar 

  • Polle A, Pfirrmann T, Chakrabarti S, Rennenberg H (1993) The effects of enhanced ozone and enhanced carbon dioxide concentrations on biomass, pigments and antioxidative enzymes in spruce needles (Picea abies L). Plant Cell Environ 16:311–316. doi:10.1111/j.1365-3040.1993.tb00874.x

    Article  CAS  Google Scholar 

  • Ranieri A, Durso G, Nali C, Lorenzini G, Soldatini GF (1996) Ozone stimulates apoplastic antioxidant systems in pumpkin leaves. Physiol Plant 97:381–387. doi:10.1111/j.1399-3054.1996.tb08871.x

    Article  CAS  Google Scholar 

  • Ranieri A, Castagna A, Soldatini GF (2000) Differential stimulation of ascorbate peroxidase isoforms by ozone exposure in sunflower plants. J Plant Physiol 156:266–271

    CAS  Google Scholar 

  • Rao MV, Hale BA, Ormrod DP (1995) Amelioration of ozone-induced oxidative damage in wheat plants grown under high carbon dioxide. Plant Physiol 109:421–432

    PubMed  CAS  Google Scholar 

  • Ryerson TB, Trainer M, Holloway JS, Parrish DD, Huey LG, Sueper DT, Frost GJ, Donnelly SG, Schauffler S, Atlas EL, Kuster WC, Goldan PD, Hubler G, Meagher JF, Fehsenfeld FC (2001) Observations of ozone formation in power plant plumes and implications for ozone control strategies. Science 292:719–723. doi:10.1126/science.1058113

    Article  PubMed  CAS  Google Scholar 

  • Sanmartin M, Drogoudi PD, Lyons T, Pateraki I, Barnes J, Kanellis AK (2003) Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone. Planta 216:918–928. doi:10.1007/s00425-002-0944-9

    PubMed  CAS  Google Scholar 

  • Schwanz P, Polle A (1998) Antioxidative systems, pigment and protein contents in leaves of adult Mediterranean oak species (Quercus pubescens and Q-ilex) with lifetime exposure to elevated CO2. New Phytol 140:411–423. doi:10.1111/j.1469-8137.1998.00290.x

    Article  CAS  Google Scholar 

  • Sehmer L, Fontaine V, Antoni F, Dizengremel P (1998) Effects of ozone and elevated atmospheric carbon dioxide on carbohydrate metabolism of spruce needles. Catabolic and detoxification pathways. Physiol Plant 102:605–611. doi:10.1034/j.1399-3054.1998.1020416.x

    Article  CAS  Google Scholar 

  • Sgherri CLM, Salvateci P, Menconi M, Raschi A, Navari-Izzo F (2000) Interaction between drought and elevated CO2 in the response of alfalfa plants to oxidative stress. J Plant Physiol 156:360–366

    CAS  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 299:152–178. doi:10.1016/S0076-6879(99)99017-1

    Article  CAS  Google Scholar 

  • Tausz M, Olszyk DM, Monschein S, Tingey DT (2004) Combined effects of CO2 and O3 on antioxidative and photoprotective defense systems in needles of ponderosa pine. Biol Plant 48:543–548. doi:10.1023/B:BIOP.0000047150.82053.e9

    Article  CAS  Google Scholar 

  • Tausz M, Grulke NE, Wieser G (2007) Defense and avoidance of ozone under global change. Environ Pollut 147:525–531. doi:10.1016/j.envpol.2006.08.042

    Article  PubMed  CAS  Google Scholar 

  • Utriainen J, Janhunen S, Helmisaari HS, Holopainen T (2000) Biomass allocation, needle structural characteristics and nutrient composition in Scots pine seedlings exposed to elevated CO2 and O3 concentrations. Trees Struct Funct 14:475–484. doi:10.1007/s004680000062

    Google Scholar 

  • Volin JC, Reich PB (1996) Interaction of elevated CO2 and O3 on growth, photosynthesis and respiration of three perennial species grown in low and high nitrogen. Physiol Plant 97:674–684. doi:10.1111/j.1399-3054.1996.tb00531.x

    Article  CAS  Google Scholar 

  • Volin JC, Reich PB, Givnish TJ (1998) Elevated carbon dioxide ameliorates the effects of ozone on photosynthesis and growth: species respond similarly regardless of photosynthetic pathway or plant functional group. New Phytol 138:315–325. doi:10.1111/j.1469-8137.1998.00100.x

    Article  CAS  Google Scholar 

  • Vurro E, Bruni R, Bianchi A, di Toppi LS (2009) Elevated atmospheric CO2 decreases oxidative stress and increases essential oil yield in leaves of Thymus vulgaris grown in a mini-FACE system. Environ Exp Bot 65:99–106. doi:10.1016/j.envexpbot.2008.09.001

    Article  CAS  Google Scholar 

  • Wang LL, He XY, Chen W (2009) Effects of elevated ozone on photosynthetic CO2 exchange and chlorophyll a fluorescence in leaves of Quercus mongolica grown in urban area. Bull Environ Contam Toxicol 82:478–481. doi:10.1007/s00128-008-9606-3

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, Tobita H, Kitao M, Maruyama Y, Choi D, Sasa K, Funada R, Koike T (2008) Effects of elevated CO2 and nitrogen on wood structure related to water transport in seedlings of two deciduous broad-leaved tree species. Trees Struct Funct 22:403–411. doi:10.1007/s00468-007-0201-8

    CAS  Google Scholar 

  • Wittmann C, Matyssek R, Pfanz H, Humar M (2007) Effects of ozone impact on the gas exchange and chlorophyll fluorescence of juvenile birch stems (Betula pendula Roth.). Environ Pollut 150:258–266. doi:10.1016/j.envpol.2007.01.013

    Article  PubMed  CAS  Google Scholar 

  • Wook KJ, Kim JH (1997) Modelling the net photosynthetic rate of Quercus mongolica stands affected by ambient ozone. Ecol Model 97:167–177. doi:10.1016/S0304-3800(96)01901-1

    Article  CAS  Google Scholar 

  • Wustman BA, Oksanen E, Karnosky DF, Noormets A, Isebrands JG, Pregitzer KS, Hendrey GR, Sober J, Podila GK (2001) Effects of elevated CO2 and O3 on aspen clones varying in O3 sensitivity: can CO2 ameliorate the harmful effects of O3? Environ Pollut 115:473–481. doi:10.1016/S0269-7491(01)00236-6

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China Important Project 90411019, the Foundation of Knowledge Innovation Program of Chinese Academy of Sciences kzcx3-sw-43 and the Innovation Program of Institute of Applied Ecology, Chinese Academy of Sciences SLYQY0414. We express our sincere thanks to Prof. Dali Tao for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingyuan He.

Additional information

Communicated by Z. Gombos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, K., Chen, W., Zhang, G. et al. Elevated CO2 ameliorated oxidative stress induced by elevated O3 in Quercus mongolica . Acta Physiol Plant 32, 375–385 (2010). https://doi.org/10.1007/s11738-009-0415-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-009-0415-z

Keywords

Navigation