Acta Physiologiae Plantarum

, Volume 32, Issue 2, pp 235–244 | Cite as

Water relations and chlorophyll fluorescence responses of two leguminous trees from the Caatinga to different watering regimes

  • Bruna D. Souza
  • Marcos V. Meiado
  • Bruno M. Rodrigues
  • Mauro G. SantosEmail author
Original Paper


Leguminous species, Piptadenia moniliformes (Benth.) and Trischidium molle (Benth.) H. E. Ireland, both prevalent in the Caatinga vegetation, were submitted to varying watering regimes under greenhouse conditions. In experiment I, 60-day-old P. moniliformes plants were maintained under suspended irrigation for 12 days. Assessment on day 12 of drought revealed that leaf relative water content decreased to 40% and stomatal conductance and transpiration were also strongly diminished. Apparent electron transport rate (ETR) and photochemical quenching (qP) values were reduced by water deficit treatment compared to controls, while non-photochemical quenching (NPQ) increased; however, the basal values were recovered in moisturized plants when analyzed after 48 h of rewatering. In experiment II, T. molle plants were watered once (1 ×), 3 (3 ×) or 5 times (5 ×) per week, up to day 65 after emergence. Chlorophyll a, chlorophyll b and carotenoid contents were reduced in the 3 × and 5 × watering treatments. Photosystem II maximum efficiency (F v/F m′), ETR and qP values strongly decreased when drainage frequency and NPQ values were increased. Observation verified that chlorophyll fluorescence is a suitable tool for evaluating the developmental characteristics of the arboreal leguminous species studied. Analysis of the data obtained suggest that plant tolerance to the dry climate conditions of the Caatinga ecosystem is directly associated with fast physiological adaptation to water deficit, by accumulating biomass in the root system in detriment to the shoots. The data presented contribute to further understanding the developmental and physiological mechanisms that enable plant adaptation to dry climates and, particularly, to the unique dry environmental conditions of the Caatinga region.


Arid environmental Drought tolerance Stomatal conductance Transpiration 



The authors M.V. Meiado and B.R.M. Rodrigues are grateful to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the scholarships.


  1. Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621. doi: 10.1093/jxb/erh196 CrossRefPubMedGoogle Scholar
  2. Barbosa DCA, Barbosa MCA, Lima LCM (2003) Fenologia de espécies lenhosas da Caatinga. In: Leal IR, Tabarelli M, Silva JMC (eds) Ecologia e Conservação da Caatinga. Universitária da UFPE, Recife, pp 657–693Google Scholar
  3. Barrs HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 15:413–428Google Scholar
  4. Blaikie SJ, Chacko EK (1998) Sap flow, leaf exchange and chlorophyll fluorescence of container-grown cashew (Anacardium occidentale L.) trees subjected to repeated cycles of soil drying. Aust J Exp Agric 38:305–311. doi: 10.1071/EA97124 CrossRefGoogle Scholar
  5. Björkman O, Powles SB (1984) Inhibition of photosynthetic reactions under water stress: interaction with light level. Planta 161:490–504. doi: 10.1007/BF00407081 CrossRefGoogle Scholar
  6. Bolhar-Nordenkampf HR, Long SP, Baker NR, Öquist G, Schreiber U, Lechner EG (1989) Chlorophyll fluorescence as probe of the photosynthetic competence of leaves in the field: a review of current instrument. Funct Ecol 3:497–514CrossRefGoogle Scholar
  7. Cabral EL, Barbosa DCA, Simabukuro EA (2004) Growth of young plants of Tabebuia aurea (Manso) Benth. & Hook. f. ex S. Moore under water stress. Acta Bot Bras 18:241–251. doi: 10.1590/S0102-33062004000200004 CrossRefGoogle Scholar
  8. Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osório ML, Carvalho I, Faria T, Pinheiro C (2002) How plants cope with water stress in the field. Photosynthesis and growth. Ann Bot 89:907–916. doi: 10.1093/aob/mcf105 Google Scholar
  9. Cornic G, Massacci A (1996) Leaf photosynthesis under drought stress. In: Baker NR (ed) Photosynthesis and the environment. series advances in photosynthesis, vol 5. Kluwer Academic Publishers, Dordrecht, pp 347–366Google Scholar
  10. Dias BFS (1992) Cerrados: uma caracterização. In: Dias BFS (ed) Alternativas de Desenvolvimento dos Cerrados: Manejo e Conservação dos Recursos Naturais Renováveis. Funatura, BrasíliaGoogle Scholar
  11. Drew MC, Lynch JM (1980) Soil anaerobiosis, microorganisms and root function. Annu Rev Phytopathol 18:37–66CrossRefGoogle Scholar
  12. Edwards GE, Baker NR (1993) Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis? Photosynth Res 37:89–102. doi: 10.1007/BF02187468 CrossRefGoogle Scholar
  13. Elsheery NI, Cao KF (2008) Gas exchange, chlorophyll fluorescence, and osmotic adjustment in two mango cultivars under drought stress. Acta Physiol Plant 30:769–777. doi: 10.1007/s11738-008-0179-x CrossRefGoogle Scholar
  14. Gil PR (ed) (2002) Wilderness—earth’s last wild places. CEMEX, MexicoGoogle Scholar
  15. Gómez-Aparicio L, Gómez JM, Zamora R, Boettinger JL (2004) Canopy vs. soil effects of shrubs facilitating tree seedlings in Mediterranean montane ecosystems. J Veg Sci 16:191–198. doi: 10.1111/j.1654-1103.2005.tb02355.x CrossRefGoogle Scholar
  16. Ireland HE (2007) Taxonomic changes in the South American genus Bocoa (Leguminosae-Swartzieae): reinstatement of the name Trischidium, and a synopsis of both genera. Kew Bull 62:333–350Google Scholar
  17. Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic, San DiegoGoogle Scholar
  18. Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349. doi: 199100104514022 CrossRefGoogle Scholar
  19. Kyparissis A, Petropoulou Y, Manetas Y (1995) Summer survival of leaves in a soft-leaved shrub (Phlomis fruticosa L., Labiatae) under Mediterranean field conditions: avoidance of photoinhibitory damage through decreased chlorophyll contents. J Exp Bot 46:1825–1831. doi: 10.1093/jxb/46.12.1825 CrossRefGoogle Scholar
  20. Laffray D, Louguet P (1990) Stomatal responses and drought resistance. Bull Soc Bot Fr l37:47–60Google Scholar
  21. Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25:275–294. doi: 10.1046/j.0016-8025.2001.00814.x CrossRefPubMedGoogle Scholar
  22. Lichtenthaler HK, Wellburn AR (1983) Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 603:591Google Scholar
  23. Machado IC, Lopes AV, Sazima M (2006) Plant sexual systems and a review of the breeding system studies in the Caatinga, a brazilian tropical dry forest. Ann Bot 97:277–287. doi: 10.1093/aob/mcj029 CrossRefPubMedGoogle Scholar
  24. Mansur RJCN, Barbosa DCA (2000) Physiological behavior in young plants of four trees species of Caatinga submitted the two cycles of water stress. Phyton 68:97–106Google Scholar
  25. Massacci A, Jones HG (1990) Use of simultaneous analysis of gas exchange and chlorophyll fluorescence quenching for analyzing the effects of water stress on photosynthesis in apple leaves. Trees 4:1–8. doi: 10.1007/BF00226233 CrossRefGoogle Scholar
  26. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence: a practical guide. J Exp Bot 51:659–668. doi: 10.1093/jexbot/51.345.659 CrossRefPubMedGoogle Scholar
  27. McCully M (1995) How do real roots work? Some new views of root structure. Plant Physiol 109:1–6. doi: 10.1104/pp.109.1.1 PubMedGoogle Scholar
  28. MMA Ministério do Meio Ambiente (2002) Avaliação e ações prioritárias para a conservação da biodiversidade da Caatinga. Universidade Federal de Pernambuco/Fundação de Apoio ao Desenvolvimento/Conservation International do Brasil, Fundação Biodiversitas, EMBRAPA/Semi-Árido. MMA/SBF, BrasíliaGoogle Scholar
  29. Nimer E (1989) Climatologia do Brasil. IBGE-SUPREN, Rio de JaneiroGoogle Scholar
  30. Queiroz LP (2007) Leguminosas da Caatinga. Universidade Estadual de Feira de Santana, Feira de SantanaGoogle Scholar
  31. Queiroz CGS, Garcia QS, Lemos-Filho JP (2002) Photosynthetic activity and membrane lipid peroxidation of aroeira-do-sertão plants under water stress and after rehydration. Braz J Plant Physiol 14:59–63. doi: 10.1590/S1677-04202002000100008 CrossRefGoogle Scholar
  32. Queiroz LP, França F, Giulietti AM, Melo E, Gonçalves CN, Funch LS, Harley RM, Funch RR, Silva TS (2005) Caatinga. In: Juncá FA, Funch L, Rocha W (eds) Biodiversidade e Conservação da Chapada Diamantina. Ministério do Meio Ambiente, BrasíliaGoogle Scholar
  33. Ribeiro RV, Machado EC, Oliveira RF, Pimentel C (2003) High temperature effects on the response of photosynthesis to light in sweet orange plants infected with Xylella fastidiosa. Braz J Plant Physiol 15:89–97. doi: 10.1590/S1677-04202003000200004 CrossRefGoogle Scholar
  34. Ribeiro RV, Santos MG, Machado EC, Oliveira RF (2008) Photochemical heat-shock response in common bean leaves as affected by previous water deficit. Russ J Plant Physiol 55:350–358. doi: 10.1134/S1021443708030102 CrossRefGoogle Scholar
  35. Sampaio EVSB (1995) Overview of the Brazilian Caatinga. In: Bullo SH, Mooney HA, Medina E (eds) Seasonally dry tropical forest. University Press, Cambridge, pp 35–63Google Scholar
  36. Santos MG, Ribeiro RV, Oliveira RF, Pimentel C (2004) Gas exchange and yield response to foliar phosphorus application in Phaseolus vulgaris L. under drought. Braz J Plant Physiol 16:171–179. doi: 10.1590/S1677-04202004000300007 CrossRefGoogle Scholar
  37. Santos MG, Ribeiro RV, Oliveira RF, Machado EC, Pimentel C (2006) The role of inorganic phosphate on photosynthesis recovery of common bean after a mild water deficit. Plant Sci 170:659–664. doi: 10.1016/j.plantsci.2005.10.020 CrossRefGoogle Scholar
  38. Santos MG, Ribeiro RV, Machado EC, Pimentel C (2009) Photosynthetic and leaf water potential responses of five common bean genotypes to mild water deficit. Biol Plant 53:229–236. doi: 10.1007/s10535-009-0044-9 CrossRefGoogle Scholar
  39. Schreiber U, Bilge W, Neubauer C (1994) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis. Ecological studies. Springer, Berlin, pp 49–70Google Scholar
  40. Schulze ED (1986) Carbon dioxide and water vapor exchange in response to drought in the atmosphere and in the soil. Annu Rev Plant Physiol 37:247–274CrossRefGoogle Scholar
  41. Silva RA, Santos AMM, Tabarelli M (2003a) Riqueza e diversidade de plantas lenhosas em cinco unidades de paisagens da caatinga. In: Leal IR, Tabarelli M, Silva JMC (eds) Ecologia e Conservação da Caatinga. Universitária da UFPE, Recife, p 337Google Scholar
  42. Silva EC, Nogueira RJMC, Azevedo-Neto AD, Santos VF (2003b) Estomatal behavior and leaf water potential in three wood species cultivated under water stress. Acta Bot Bras 17:231–246. doi: 10.1590/S0102-33062003000200006 Google Scholar
  43. Silva EC, Nogueira RJMC, Araújo FP, Melo NF, Azevedo-Neto AD (2008) Physiological responses to salt stress in young umbu plants. Environ Exp Bot 63:147–157. doi: 10.1016/j.envexpbot.2007.11.010 CrossRefGoogle Scholar
  44. Souza RP, Machado EC, Silva JAB, Lagoa AMMA, Silveira JAG (2004) Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environ Exp Bot 51:45–56. doi: 10.1016/S0098-8472(03)00059-5 CrossRefGoogle Scholar
  45. Subbarao GV, Johansen AC, Slinkard RC, Rao N, Saxena NP, Chauhan YS (1995) Strategies for improving drought resistance in grain legumes. CRC Crit Rev Plant Sci 14:469–523CrossRefGoogle Scholar
  46. Tang AC, Kawamitsu Y, Kanechi M, Boyer JS (2002) Photosynthetic oxygen evolution at low water potential in leaf discs lacking an epidermis. Ann Bot 89:861–870. doi: 10.1093/aob/mcf081 CrossRefPubMedGoogle Scholar
  47. van Kooten O, Snel JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photos Res 25:147–150. doi: 10.1007/BF00033156 CrossRefGoogle Scholar
  48. Yang J, Kong Q, Xiang C (2009) Effects of low night temperature on pigments, chl a fluorescence and energy allocation in two bitter gourd (Momordica charantia L.) genotypes. Acta Physiol Plant 31:285–293. doi: 10.1007/s11738-008-0231-x CrossRefGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2009

Authors and Affiliations

  • Bruna D. Souza
    • 1
  • Marcos V. Meiado
    • 1
  • Bruno M. Rodrigues
    • 1
  • Mauro G. Santos
    • 1
    Email author
  1. 1.Departamento de BotânicaUniversidade Federal de PernambucoRecifeBrazil

Personalised recommendations