Skip to main content
Log in

Genotypic difference in response of peroxidase and superoxide dismutase isozymes and activities to salt stress in barley

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Difference in isozymes and activities of peroxidase (POD) and superoxide dismutase (SOD) in two barley (Hordeum vulgare L.) genotypes differing in salt tolerance (Gebeina, tolerant; Quzhou, sensitive) was investigated using a hydroponic experiment. The activities of both enzymes were significantly increased when the plants of the two barley genotypes were exposed to salt stress, with salt-tolerant genotype being generally higher than the sensitive one. The variation in the POD and SOD isozymes was dependent on barley genotype, salt level and exposure time. When the plants were exposed to salt stress for 10 days, two new POD isozymes were found, R m0.26 (R m, relative mobility of enzyme to dye) in Gebeina and R m0.45 in Quzhou. Both isozymes disappeared after 20 days of salt stress, but R m0.26 appeared again 30 days after the stress. Two new SOD isozymes of R m0.19 and R m0.46 were found in Gebeina when exposed to NaCl for 10 days, but only R m0.46 in Quzhou. As the time of salt stress extended, more new SOD isozymes were detected, R m0.35 in both genotypes in all different salt treatments and R m0.48 in Gebeina under 200 mM NaCl stress. At 30 days after the stress, all the new SOD isozymes disappeared except for R m0.48 in Gebeina under 200 mM NaCl stress. The results suggest that the increased POD and SOD activities could be partly due to the formation of some new isozymes and the tolerant variety had better ability to form new isozymes to overcome salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Adele M, Maria S, Rosaria PM (2003) Tolerance of kikuyu grass to long-term salt stress is associated with induction of antioxidant defenses. Plant Growth Regul 41:57–62. doi:10.1023/A:1027378417559

    Article  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341. doi:10.1093/jexbot/53.372.1331

    Article  CAS  PubMed  Google Scholar 

  • Anderson MD, Prasad TK, Stewart CR (1995) Changes in isozyme profiles of catalase, peroxidase, and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiol 109:1247–1257

    CAS  PubMed  Google Scholar 

  • Badawi GH, Yamauchi Y, Shimada E, Sasaki R, Kawano N, Tanaka K, Tanaka K (2004) Enhanced tolerance to salt stress and water deficit by over-expressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. Plant Sci 166:919–928. doi:10.1016/j.plantsci.2003.12.007

    Article  Google Scholar 

  • Bor M, Ozdemir F, Turkan I (2003) The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Sci 164:77–84. doi:10.1016/S0168-9452(02)00338-2

    Article  CAS  Google Scholar 

  • Davies KJA (1987) Protein damage and degradation by oxygen radicals I. General aspects. J Biol Chem 262:9895–9901

    CAS  PubMed  Google Scholar 

  • De Gara L, Tommasi F (1999) Ascorbate redox enzymes: a network of reactions involved in plant growth. Recent Res Dev Phytochem 3:1–15

    Google Scholar 

  • Demiral T, Turkan I (2004) Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment. J Plant Physiol 161:1089–1100. doi:10.1016/j.jplph.2004.03.009

    Article  CAS  PubMed  Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9. doi:10.1016/S0168-9452(98)00025-9

    Article  CAS  Google Scholar 

  • Ebru B, Fusun E, Meral Y, Avni OH (2004) Antioxidant responses of shoots and roots of lentil to NaCl-salinity stress. Plant Growth Regul 42:69–77. doi:10.1023/B:GROW.0000014891.35427.7b

    Article  Google Scholar 

  • Fadzilla NM, Robert P, Finch RP, Burdon RH (1997) Salinity, oxidative stress and antioxidant response in shoot cultures of rice. J Exp Bot 48:325–331. doi:10.1093/jxb/48.2.325

    Article  CAS  Google Scholar 

  • Fridovich I (1986) Biological effects of the superoxide radical. Arch Biochem Biophys 247:1–11. doi:10.1016/0003-9861(86)90526-6

    Article  CAS  PubMed  Google Scholar 

  • Gomez JM, Hernandez JA, Jimenez A, Del Rio LA, Sevilla F (1999) Differential response of antioxidative enzymes of chloroplasts and mitochondria to long-term NaCl stress of pea plants. Free Radic Res 31:511–518. doi:10.1080/10715769900301261

    Article  Google Scholar 

  • Gomez JM, Jimenez A, Olmos E, Sevilla F (2004) Location and effects of long-term NaCl stress on superoxide dismutase and ascorbate peroxidase isozymes of pea (Pisum sativum cv. Puget) chloroplasts. J Exp Bot 55:119–130. doi:10.1093/jxb/erh013

    Article  CAS  PubMed  Google Scholar 

  • Gueta-Dahan Y, Yaniv Z, Zilinkas BA, Ben-Hayyim G (1997) Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in citrus. Planta 203:460–469. doi:10.1007/s004250050215

    Article  CAS  PubMed  Google Scholar 

  • Hernandez JA, Corpas FJ, Gomez M, Del Rio LA, Sevilla F (1993) Salt-induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria. Physiol Plant 89:103–110. doi:10.1111/j.1399-3054.1993.tb01792.x

    Article  CAS  Google Scholar 

  • Hernandez JA, Del Rio LA, Sevilla F (1994) Salt stress-induced changes in superoxide dismutase isozymes in leaves and mesophyll protoplasts from Vigna unguiculata (L.) Walp. New Phytol 126:37–44. doi:10.1111/j.1469-8137.1994.tb07527.x

    Article  CAS  Google Scholar 

  • Hernandez JA, Olmos E, Corpas FJ, Sevilla F, del Rio LA (1995) Salt-induced oxidative stress in chloroplast of pea plants. Plant Sci 105:151–167. doi:10.1016/0168-9452(94)04047-8

    Article  CAS  Google Scholar 

  • Hernandez JA, Jimenez A, Mullineaux PM, Sevilla F (2000) Tolerance of Pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defenses. Plant Cell Environ 23:853–862. doi:10.1046/j.1365-3040.2000.00602.x

    Article  CAS  Google Scholar 

  • Hernandez JA, Ferrer MA, Jimenez A, Barcelo AR, Sevilla F (2001) Antioxidant systems and \( {{{\text{O}}_{2}^{ \cdot - } } \mathord{\left/ {\vphantom {{{\text{O}}_{2}^{ \cdot - } } {{\text{H}}_{ 2} {\text{O}}_{2} }}} \right. \kern-\nulldelimiterspace} {{\text{H}}_{ 2} {\text{O}}_{2} }} \) production in the apoplast of pea leaves: its relation with salt-induced necrotic lesions in minor veins. Plant Physiol 127:817–831. doi:10.1104/pp.010188

  • Huang YZ, Zhang GP, Wu FB, Chen JX, Zhou MX (2006) Difference in physiological traits among salt-stressed barley genotypes. Commun Soil Sci Plant Anal 37:557–570. doi:10.1080/00103620500449419

    Article  CAS  Google Scholar 

  • Khan MH, Panda SK (2002) Induction of oxidative stress in roots of Oryza sativa L. in response to salt stress. Biol Plant 45:625–627. doi:10.1023/A:1022356112921

    Article  CAS  Google Scholar 

  • Lee DH, Kim YS, Lee CB (2001) The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). J Plant Physiol 158:737–745. doi:10.1078/0176-1617-00174

    Article  CAS  Google Scholar 

  • Liang YC, Chen Q, Liu Q, Zhang WH, Ding RX (2003) Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgareL.). J Plant Physiol 160:1157–1164. doi:10.1078/0176-1617-01065

    Article  CAS  PubMed  Google Scholar 

  • Lin CC, Kao CH (1999) NaCl-induced changes in ionically bound peroxidase activity in roots of rice seedlings. Plant Soil 216:147–153. doi:10.1023/A:1004714506156

    Article  CAS  Google Scholar 

  • Nakanishi F, Fujii T (1992) Appearance of peroxidase isozymes in floral-initiated shoot apices of Pharbitis nil. Physiol Plant 86:197–201. doi:10.1034/j.1399-3054.1992.860202.x

    Article  CAS  Google Scholar 

  • Sairam RK, Srivastava GC (2002) Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long-term salt stress. Plant Sci 162:897–904. doi:10.1016/S0168-9452(02)00037-7

    Article  CAS  Google Scholar 

  • Sairam RK, Srivastava GC, Agarwal S, Meena RC (2005) Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biol Plant 49:85–91. doi:10.1007/s10535-005-5091-2

    Article  CAS  Google Scholar 

  • Szabolcs I (1989) Salt-affected soils. CRC Press, Boca Raton

    Google Scholar 

  • Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Kishitani S, Takabe T, Yokota S, Takabe T (1999) Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Sci 148:131–138. doi:10.1016/S0168-9452(99)00133-8

    Article  CAS  Google Scholar 

  • Vaidyanathan H, Sivakumar P, Chakrabarty R, Thomas G (2003) Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.)-differential response in salt-tolerant and sensitive varieties. Plant Sci 165:1411–1418. doi:10.1016/j.plantsci.2003.08.005

    Article  CAS  Google Scholar 

  • Wang HX, Hu ZA, Zhong M, Lu WJ, Wei W, Yun R, Qian YQ (1997) Genetic differentiation and physiological adaptation of wild soybean (Glycine Soja) populations under saline conditions: isozymatic and random amplified polymorphic DNA study. Acta Bot Sin 39:34–42

    Google Scholar 

  • Wang YH, Ying Y, Chen J, Wang XC (2004) Transgenic Arabidopsis overexpressing Mn-SOD enhanced salt tolerance. Plant Sci 167:671–677. doi:10.1016/j.plantsci.2004.03.032

    Article  CAS  Google Scholar 

  • Zhang XZ (1992) The measurement and mechanism of lipid peroxidation and SOD, POD and CAT activities in biological system. In: Zhang XZ (ed) Research methodology of crop physiology. Agriculture Press, Beijing, pp 208–211

    Google Scholar 

Download references

Acknowledgments

We are deeply grateful to the Chinese Natural Science Foundation (30630047) and the 111 Project (B06014) for their financial support to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoping Zhang.

Additional information

Communicated by G. Bartosz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, X., Huang, Y., Zeng, F. et al. Genotypic difference in response of peroxidase and superoxide dismutase isozymes and activities to salt stress in barley. Acta Physiol Plant 31, 1103–1109 (2009). https://doi.org/10.1007/s11738-009-0328-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-009-0328-x

Keywords

Profiles

  1. Meixue Zhou