Skip to main content
Log in

Cu,Zn-superoxide dismutase is differently regulated by cadmium and lead in roots of soybean seedlings

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The cadmium (Cd2+) and lead (Pb2+)-induced changes in Cu,Zn-SOD gene expression on the level of mRNA accumulation and enzyme activity were analyzed in roots of soybean (Glycine max) seedlings. The Cd2+ caused the induction of copper–zinc superoxide dismutase (Cu,Zn-SOD) mRNA accumulation, at each analyzed metal concentration (5–25 mg/l), whereas in Pb2+-treated roots this effect was observed only at the medium metal concentrations (50–100 mg/l of Pb2+). The analysis of Cu,Zn-SOD activity proved an increase in enzyme activity during Cd2+/Pb2+ stresses, however in Pb2+-treated plants the activity of enzyme was not correlated with respective mRNAs level. Presented data suggest that different metals may act on various level of Cu,Zn-SOD expression in plants exposed to heavy metals stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53(372):1331–1341. doi:10.1093/jexbot/53.372.1331

    Article  PubMed  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399. doi:10.1146/annurev.arplant.55.031903.141701

    Article  PubMed  CAS  Google Scholar 

  • Arahira M, Nong VH, Kadokura K, Kimura K, Udaka K, Fukazawa C (1998) Molecular cloning and expression patterns of Cu/Zn-superoxide dismutases in developing soybean seeds. Biosci Biotechnol Biochem 62(5):1018–1021. doi:10.1271/bbb.62.1018

    Article  PubMed  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gel. Anal Biochem 44:276–287. doi:10.1016/0003-2697(71):90370-90378

    Article  PubMed  CAS  Google Scholar 

  • Bowler C, Van Montagu M, Inzé D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116. doi:10.1146/annurev.pp.43.060192.000503

    Article  CAS  Google Scholar 

  • Bowler C, Van Camp W, Van Montagu M, Inzé D (1994) Superoxide dismutase in plants. Crit Rev Plant Sci 13(3):199–218. doi:10.1080/713608062

    Article  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  • Cohu CM, Pilon M (2007) Regulation of superoxide dismutase expression by copper availability. Physiol Plant 129:747–755. doi:10.1111/j.1399-3054.2007.00879.x

    Article  CAS  Google Scholar 

  • Davis BJ (1964) Disc electrophoresis-II: method an application to human serum proteins. Ann N Y Acad Sci 121:404–427. doi:10.1111/j.1749-6632.1964.tb14213.x

    Article  PubMed  CAS  Google Scholar 

  • Dugas DV, Bartel B (2004) MicroRNA regulation of gene expression in plants. Curr Opin Plant Biol 7:512–520. doi:10.1016/j.pbi.2004.07.011

    Article  PubMed  CAS  Google Scholar 

  • Ferreira RR, Fornazier RF, Vitoria AP, Lea PJ, Azevedo RA (2002) Changes in antioxidant enzyme activities in soybean under cadmium stress. J Plant Nutr 25(2):327–342. doi:10.1081/PLN-100108839

    Article  CAS  Google Scholar 

  • Gapper C, Dolan L (2006) Control of plant development by reactive oxygen species. Plant Physiol 141:341–345. doi:10.1104/pp.106.079079

    Article  PubMed  CAS  Google Scholar 

  • Gwóźdź EA, PrzymusiÅ„ski R, RuciÅ„ska R, Deckert J (1997) Plant cell responses to heavy metals: molecular and physiological aspects. Acta Physiol Plant 19(4):459–465. doi:10.1007/s11738-997-0042-5

    Article  Google Scholar 

  • Gwóźdź EA, Kopyra M, StachoÅ„-Wilk M, Deckert J (2006) Nitric oxide enhances the antioxidant capacity of plant cells exposed to cadmium. XV Congress of Federation of European Societies of Plant Biology, Lyon

    Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322. doi:10.1104/pp.106.077073

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutterdge JMC (1989) Free radicals in biology and medicine. Clarendon Press, Oxford

    Google Scholar 

  • Hartwig A (2001) Zink finger proteins as potential targets for toxic metal ions: differential effects on structure and function. Antioxid Redox Signal 3:625–634. doi:10.1089/15230860152542970

    Article  PubMed  CAS  Google Scholar 

  • Hernández-Nistal J, Dopico B, Labrador E (2002) Cold and salt stress regulates the expression and activity of a chickpea cytosolic Cu/Zn superoxide dismutase. Plant Sci 163:507–514. doi:10.1016/S0168-9452(02)00153-X

    Article  Google Scholar 

  • Jithesh MN, Prashanth SR, Sivaprakash KR, Parida A (2006) Monitoring expression profiles of antioxidant genes to salinity, iron, oxidative, light and hyperosmotic stresses in the highly salt tolerant grey mangrove, Avicennia marina (Forsk.) Vierh. by mRNA analysis. Plant Cell Rep 25:865–876. doi:10.1007/s00299-006-0127-4

    Article  PubMed  CAS  Google Scholar 

  • Karpinski S, Wingsle G, Karpinska B, Hallgren J-E (1992a) Differential expression of Cu, Zn-superoxide dismutases in Pinus sylvestris needles exposed to SO2 and NO2. Physiol Plant 85:689–696. doi:10.1111/j.1399-3054.1992.tb04772.x

    Article  CAS  Google Scholar 

  • Karpinski S, Wingsle G, Olsson O, Hällgren J-E (1992b) Characterization of cDNAs encoding CuZn-superoxide dismutases in scots pine. Plant Mol Biol 18:545–555. doi:10.1007/BF00040670

    Article  PubMed  CAS  Google Scholar 

  • Kernodle SP, Scandalios JG (1996) A comparison of the structure and function of the highly homologous maize antioxidant Cu/Zn superoxide dismutase genes Sod4 and Sod 4A. Genetics 144:317–328

    PubMed  CAS  Google Scholar 

  • Kovalchuk I, Titov V, Hohn B, Kovalchuk O (2005) Transcriptome profiling reveals similarities and differences in plant responses to cadmium and lead. Mutat Res 570:149–161. doi:10.1016/j.mrfmmm.2004.10.004

    PubMed  CAS  Google Scholar 

  • Kurepa J, Van Montagu M, Inzé D (1997a) Expression of sodCp and sodB genes in Nicotiana tabacum: effects of light and copper excess. J Exp Bot 48(317):2007–2014. doi:10.1093/jexbot/48.317.2007

    Article  CAS  Google Scholar 

  • Kurepa J, Hérouart D, Van Montagu M, Inzé D (1997b) Differential expression of Cu, Zn and Fe-superoxide dismutase genes of tobacco during development, oxidative stress, and hormonal treatments. Plant Cell Physiol 38(4):463–470

    PubMed  CAS  Google Scholar 

  • Lombardi L, Sebastiani L (2005) Copper toxicity in Prunus cerasifera: growth and antioxidant enzymes responses of in vitro grown plants. Plant Sci 168:797–802. doi:10.1016/j.plantsci.2004.10.012

    Article  CAS  Google Scholar 

  • Madamanchi NR, Donahue JL, Cramer CL, Alscher RG, Pedersen K (1994) Differential response of Cu, Zn superoxide dismutases in two pea cultivars during a short-term exposure to sulfur dioxide. Plant Mol Biol 26:95–103. doi:10.1007/BF00039523

    Article  PubMed  CAS  Google Scholar 

  • Mylona PV, Polidoros AN, Scandalios JG (2007) Antioxidant gene responses to ROS-generating xenobiotics in developing and germinating scutella of maize. J Exp Bot 58:1301–1312. doi:10.1093/jxb/erl292

    Article  PubMed  CAS  Google Scholar 

  • Olmos E, Martinez-Solano JR, Piqueras A, Hellin E (2003) Early step in the oxidative burst induced by cadmium in cultured tobacco cells (BY-2 line). J Exp Bot 54:291–301. doi:10.1093/jxb/54.381.291

    Article  PubMed  CAS  Google Scholar 

  • PrzymusiÅ„ski R (2003) Proteins of lupin induced by lead ions and other stress factors. Wydawnictwo Naukowe UAM, PoznaÅ„ (in Polish, Abstract and Summary in English)

  • PrzymusiÅ„ski R, Gwóźdź EA (1999) Heavy metal-induced polypeptides in lupine roots are similar to pathogenesis-related proteins. J Plant Physiol 154(5–6):703–708

    Google Scholar 

  • PrzymusiÅ„ski R, RuciÅ„ska R, Gwóźdź EA (1995) The stress-stimulated 16 kDa polypeptide from lupine roots has properties of cytosolic Cu:Zn-superoxide dismutase. Environ Exp Bot 35:485–495. doi:10.1016/0098-8472(95)00029-1

    Article  Google Scholar 

  • Romero-Puertas MC, Palma JM, Gomez M, Del Rio LA, Sandalio LM (2002) Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ 25:677–686. doi:10.1046/j.1365-3040.2002.00850.x

    Article  CAS  Google Scholar 

  • RuciÅ„ska R, Waplak S, Gwóźdź EA (1999) Free radical formation and activity of antioxidant enzymes in lupine roots exposed to lead. Plant Physiol Biochem 37:187–194. doi:10.1016/S0981-9428(99)80033-3

    Article  Google Scholar 

  • RuciÅ„ska R, Sobkowiak R, Gwóźdź EA (2004) Genotoxicity of lead in lupine root cells as evaluated by the comet assay. Cell Mol Biol Lett 9:519–528

    PubMed  Google Scholar 

  • Sakaguchi S, Fukuda T, Takano H, Ono K, Takio S (2004) Photosynthetic electron transport differentially regulates the expression of superoxide dismutase genes in liverwort, Marchantia paleacea var. diptera. Plant Cell Physiol 45(3):318–324. doi:10.1093/pcp/pch039

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto A, Ohsuga H, Tanaka K (1992a) Nucleotide sequences of two cDNA clones encoding different Cu/Zn-superoxide dismutases expressed in developing rice seeds (Oryza sativa L.). Plant Mol Biol 19:323–327. doi:10.1007/BF00027355

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto A, Okumura T, Ohsuga H, Tanaka K (1992b) Genomic structure of the gene for copper/zinc-superoxide dismutase in rice. FEBS Lett 301(2):185–189. doi:10.1016/0014-5793(92)81244-G

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto A, Nosaka Y, Tanaka K (1993a) Cloning and sequencing analysis of a complementary DNA for manganese-superoxide dismutase from rice (Oryza sativa L.). Plant Physiol 103:1477–1478. doi:10.1104/pp.103.4.1477

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto A, Ohsuga H, Wakaura M, Mitsukawa N, Hibina T, Masumura T, Sasaki Y, Tanaka K (1993b) cDNA cloning and expression of the plastidic copper/zinc-superoxide dismutase from spinach (Spinacia oleracea L.) leaves. Plant Cell Physiol 34(6):965–968

    CAS  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gomez M, Romero-Puertas MC, del Rio LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    PubMed  CAS  Google Scholar 

  • Sanita di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plant. Environ Exp Bot 41:105–130. doi:10.1016/S0098-8472(98)00058-6

    Article  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53(372):1351–1365. doi:10.1093/jexbot/53.372.1351

    Article  PubMed  Google Scholar 

  • Schützendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in scots pine roots. Plant Physiol 127:887–898. doi:10.1104/pp.010318

    Article  PubMed  Google Scholar 

  • Seregin IV, Ivanov VB (2001) Physiological aspects of cadmium and lead toxic effects on higher plants. Russ J Plant Physiol 48(4):523–544. doi:10.1023/A:1016719901147

    Article  CAS  Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17(1):35–52. doi:10.1590/S1677-04202005000100004

    Article  CAS  Google Scholar 

  • Sobkowiak R, Deckert J (2003) Cadmium-induced changes in growth and cell cycle gene expression in suspension-culture cells of soybean. Plant Physiol Biochem 41:767–772. doi:10.1016/S0981-9428(03)00101-3

    Article  CAS  Google Scholar 

  • Sobkowiak R, Deckert J (2004) The effect of cadmium on cell cycle control in suspension culture cells of soybean. Acta Physiol Plant 26:335–344. doi:10.1007/s11738-004-0023-x

    Article  CAS  Google Scholar 

  • Sobkowiak R, Deckert J (2006) Proteins induced by cadmium in soybean cells. J Plant Physiol 163:1203–1206. doi:10.1016/j.jplph.2005.08.017

    Article  PubMed  CAS  Google Scholar 

  • Sobkowiak R, Rymer K, RuciÅ„ska R, Deckert J (2004) Cadmium-induced changes in antioxidant enzymes in suspension culture of soybean cells. Acta Biochim Pol 51:219–222

    PubMed  CAS  Google Scholar 

  • Sunkar R, Zhu J-K (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019. doi:10.1105/tpc.104.022830

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Kapoor A, Zhu J-K (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065. doi:10.1105/tpc.106.041673

    Article  PubMed  CAS  Google Scholar 

  • Torres MA, Jones JDG, Dangl JL (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiol 141:373–378. doi:10.1104/pp.106.079467

    Article  PubMed  CAS  Google Scholar 

  • Tsang EWT, Bowler C, Hérouart D, Van Camp W, Villarroel R, Genetello C, Van Montagu M, Inzé D (1991) Differential regulation of superoxide dismutases in plants exposed to environmental stress. Plant Cell 3:783–792

    Article  PubMed  CAS  Google Scholar 

  • Tsukamoto S, Morita S, Hirano E, Yokoi H, Masumura T, Tanaka K (2005) A novel cis-element that is responsive to oxidative stress regulates three antioxidant defense genes in rice. Plant Physiol 137:317–327. doi:10.1104/pp.104.045658

    Article  PubMed  CAS  Google Scholar 

  • Van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141:384–390. doi:10.1104/pp.106.078295

    Article  PubMed  Google Scholar 

  • Vitoria AP, Lea PJ, Azevedo RA (2001) Antioxidant enzymes response to cadmium in radish tissues. Phytochemistry 57:701–710. doi:10.1016/S0031-9422(01)00130-3

    Article  PubMed  CAS  Google Scholar 

  • Wilkins DA (1957) A technique for the measurement of lead tolerance in plants. Nature 180:37–38. doi:10.1038/180037b0

    Article  CAS  Google Scholar 

  • Yamasaki H, Abdel-Ghany SE, Cohu CM, Kobayashi Y, Shikanai T, Pilon M (2007) Regulation of copper homeostasis by microRNA in Arabidopsis. J Biol Chem 282(22):16369–16378. doi:10.1074/jbc.M700138200

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Deckert.

Additional information

Communicated by P. Wojtaszek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pawlak, S., Firych, A., Rymer, K. et al. Cu,Zn-superoxide dismutase is differently regulated by cadmium and lead in roots of soybean seedlings. Acta Physiol Plant 31, 741–747 (2009). https://doi.org/10.1007/s11738-009-0286-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-009-0286-3

Keywords

Navigation