Angelova V, Ivanova R, Delibaltova V, Ivanov K (2004) Bio-accumulation and distribution of heavy metals in fibre crops (flax, cotton and hemp). Ind Crops Prod 19:197–205
Article
CAS
Google Scholar
Bhargava A, Rana TS, Shukla S, Ohri D (2005) Seed protein electrophoresis of some cultivated and wild species of Chenopodium (Chenopodiaceae). Biol Plant 49:505–511
Article
CAS
Google Scholar
Bhargava A, Shukla S, Ohri D (2006) Karyotypic studies on some cultivated and wild species of Chenopodium (Chenopodiaceae). Genet Res Crop Evol 53:1309–1320
Article
Google Scholar
Chaney RL (1980) Health risks associated with toxic metals in municipal sludge. In: Bitton G, Damro BL, Davidson GT, Davidson JM (eds) Sludge—health risks of land application. Ann Arbor Sci Publ, Ann Arbor, MI, pp 59–83
Google Scholar
Dushenkov V, Kumar PBAN, Motto H, Raskin I (1995) Rhizifiltration: the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29:1239–1245
Article
CAS
Google Scholar
Fisher RA, Yates F (1938) Statistical tables for biological, agricultural and medicinal research, 5 Aufl. Oliver and Boyd, Edinburgh
Google Scholar
Gaudchau M, Schneider M (1996) Investigation of heavy metal accumulation in various medicinal plants and linseed. Beitr Zuctungsforsch 2:381–384
CAS
Google Scholar
Hardiman RT, Jacoby B, Banin A (1984) Factors affecting the distribution of cadmium, copper and zinc and their effect upon yield and zinc content in bush bean (Phaseolus vulgaris L.). Plant Soil 81:17–27
Article
CAS
Google Scholar
Harding JPC, Whitton BA (1981) Accumulation of zinc, cadmium and lead by field populations of Lemanea. Water Res 15:301–319
Article
CAS
Google Scholar
Herawati N, Suzuki S, Hayashi K, Rivai IF, Koyama H (2000) Cadmium, copper and zinc levels in rice and soil of Japan, Indonesia and China by soil type. Bull Environ Contam Toxicol 64:33–39
PubMed
Article
CAS
Google Scholar
Hocking PJ, McLaughlin MJ (2000) Genotypic variation in cadmium accumulation by seed of linseed and comparison with seeds of some other crop species. Aust J Agr Res 51:427–433
Article
CAS
Google Scholar
Hogan GD, Rauser WE (1981) Role of copper binding, absorption and translocation in copper tolerance of Agrostis giganteum Roth. J Exp Bot 32:27–36
Article
CAS
Google Scholar
Johnson HW, Robinson HF, Comstock RE (1955) Genotypic and phenotypic correlations in soybean and their implications in selection. Agron J 47:477–483
Article
Google Scholar
Kelly MG, Griton C, Whitton BA (1987) Use of moss-bags for monitoring heavy metals in rivers. Water Res 21:1429–1435
Article
CAS
Google Scholar
Kim S, Kang KH, Johnson-Green P, Lee EJ (2003) Investigation of heavy metal accumulation in Polygonum thunbergii for phytoextraction. Environ Pollut 126:235–243
PubMed
Article
CAS
Google Scholar
Kumar PBAN, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238
Article
CAS
Google Scholar
Li YM, Chaney RL, Schneiter AA, Miller JF (1995) Genotypic variation in kernel cadmium concentration in sunflower germplasm under varying soil conditions. Crop Sci 35:137–141
Article
Google Scholar
Li YM, Chaney RL, Schneiter AA, Miller JF, Elias EM, Hammond JJ (1997) Screening for low cadmium phenotypes in sunflower, durum wheat and flax. Euphytica 94:23–30
Article
CAS
Google Scholar
Liu J, Zhu Q, Zhang Z, Xu J, Yang J, Wong MH (2005) Variations in cadmium accumulation among rice cultivars and types and the selection of cultivars for reducing cadmium in the diet. J Sci Food Agric 85:147–153
Article
CAS
Google Scholar
McLaughlin MJ, Parker DR, Clarke JM (1999) Metals and micronutrients- food safety issues. Field Crops Res 60:143–163
Article
Google Scholar
Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: and evaluation. Eng Geol 60:193–207
Article
Google Scholar
Nan ZR, Zhao CY, Li JJ, Chen FH, Liu Y (1999) Field survey of Cd and Pb contents in spring wheat (Triticum aestivum L.) grain grown in Baijin City, Gansu Province, People’s Republic of China. Bull Environ Contam Toxicol 63:546–552
PubMed
Article
CAS
Google Scholar
Partap T, Joshi BD, Galwey NW (1998) Chenopods: Chenopodium spp. promoting the conservation and use of underutilized and neglected crops. 22. Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute, Rome
Google Scholar
Paustenbach DJ, Sheenan PJ, Paull JM, Wisser LM, Finley BL (1992) Review of the allergic contact dermatistis hazard posed by chromium-contaminated soil: identifying a “safe” concentration. J Toxicol Environ Health 37:177
PubMed
CAS
Article
Google Scholar
Reeves RD, Baker AJM (2000) Metal accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229
Google Scholar
Risi J, Galwey NW (1989) Chenopodium grains of the Andes: a crop for the temperate latitudes. In: Wickens GE, Haq N, Day P (eds) New crops for food and industry. Chapman and Hall, London, pp 222–234
Google Scholar
Robinson HF, Comstock RE, Harvey PH (1949) Estimates of heritability and the degree of dominance in corn. Agron J 41:353–359
Article
Google Scholar
Salt DE, Blaylock M, Kumar PBAN, Dushenkov V, Enaley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biol Tech 13:468–474
CAS
Google Scholar
Schneider M, Marquard R, Kuhlmann H (1996) Cadmium accumulation of Fagopyrum esculentum and Linum usitatissimum grown on different soils in pot and field areas. Beitr Zuchtunsforsch 2:385–388
CAS
Google Scholar
Senthilkumar P, Prince WSPM, Sivakumar S, Subbhuraam CV (2005) Prosopis juliflora—a green solution to decontaminate heavy metal (Cu and Cd) contaminated soils. Chemosphere 60:1493–1496
PubMed
Article
CAS
Google Scholar
Singh RK, Chaudhary BD (1985) Biometrical methods in quantitative genetic analysis. Kalyani Publishers, New Delhi
Google Scholar
Srivastava JP, Singh HN, Singh SP (1972) Genetic studies on yield components in pea (Pisum sativum L. var. arvense poir). Ind J Agric Sci 42:1001–1004
Google Scholar
Yanchev I, Jalnov I, Terziev I (2000) Hemps (Cannabis sativa L.) capacities for restricting the heavy metal soil pollution. Plant Sci 37:532–537
CAS
Google Scholar