Skip to main content

Advertisement

Log in

Symbiotic response of common bean (Phaseolus vulgaris L.) to iron deficiency

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

In order to assess symbiotic activity (the nodules integrity and the iron use efficiency) in common bean (Phaseolus vulgaris L.) under low iron availability, the growth of plants and nodules, the concentration of leghaemoglobin and malondialdehyde, and activity of nitrogenase, catalase, peroxidase and superoxide dismutase were analysed in two (contrasting) common bean varieties subjected to iron deficiency. Results show that nitrogen fixation and leghaemoglobin accumulation decreased at limiting iron availability while malondialdehyde concentration increased under these conditions. The tolerant variety to iron deficiency, ARA14, was clearly less affected than the sensitive one, Coco blanc. A significant stimulation of peroxidase (POD) activity was observed in ARA14 under iron deficiency. At the same conditions, SOD and CAT activities in ARA14 plants were maintained at high level. It was also found that the iron use efficiency for leghaemoglobin accumulation, SOD, CAT and POD activities were critical for the protection of symbiotic system against oxidative burst and for the maintaining of an optimal functioning of N2 fixing system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ARA:

Acetylene reduction activity

CAT:

Catalase

DW:

Dry weight

FeUE:

Fe use efficiency

FW:

Fresh weight

MDA:

Malondialdehyde

POD:

Peroxidase

ROS:

Reactive oxygen species

SNF:

Symbiotic nitrogen fixation

SOD:

Superoxide dismutase

TBA:

Thiobarbituric acid

TCA:

Trichloroacetic acid

References

  • Aebi H (1984) Catalase in vitro. Method Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Babber S, Sheokand S, Malik S (2000) Nodule structure and functioning in chickpea (Cicer arietinum) as affected by salt stress. Biol Plant 43:269–273

    Article  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  PubMed  CAS  Google Scholar 

  • Becana M, Moran JF, Iturbe-Ormaetxe I (1998) Iron-dependent oxygen free radical generation in plants subjected to environmental stress: toxicity and antioxidant protection. Plant Soil 201:137–147

    Article  CAS  Google Scholar 

  • Becana M, Dalton DA, Moran JF, Iturbe-Ormaetexe I, Matamoros MA, Ubio MC (2000) Reactive oxygen species and antioxidants in legume nodules. Physiol Plant 109:372–381

    Article  CAS  Google Scholar 

  • Bergersen FJ, Goodchild DJ (1973) Cellular location and concentration of leghaemoglobin in soybean root nodules. Aust J Biol Sci 26:741–756

    CAS  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Day DA, Copeland L (1991) Carbon metabolism and compartmentation in nitrogen-fixing legume nodules. Plant Physiol Biochem 29(2):185–201

    CAS  Google Scholar 

  • Del Rio LA, Gomez M, Yanez J, Leal A, Lopez GJ (1978) Iron deficiency in pea plants effect on catalase, peroxidase, chlorophyll and proteins of leaves. Plant Soil 49:343–353

    Article  Google Scholar 

  • Drevon JJ, Kalia VC, Pedelahore P (1988) In situ open-flow assay of acetylene reduction activity by soybean root nodules: influence of acetylene and oxygen. Plant Physiol Biochem 26:73–78

    CAS  Google Scholar 

  • Drevon JJ, Deransart C, Ireki H, Payre H, Roy G, Serraj R (1994) La salinité abaisse la conductance des nodosités de légumineuses à la diffusion de l’oxygène. In: Drevon JJ (Ed) Facteurs limitant la fixation symbiotique de l’azote dans le bassin méditerranéen, INRA Editions, les colloques no 77, pp 73–84

  • Esterbauer H (1993) Estimation of peroxidative damage. In: Vincent JL (ed) Update in intensive care and emergency. Medicine 17:80–91

  • Iturbe-Ormaetxe I, Moran JF, Arrese-Igor C, Gogorcena Y, Klucas RV, Becana M (1995) Activated oxygen and antioxidant defences in iron-deficient pea plants. Plant Cell Environ 18:421–429

    Article  CAS  Google Scholar 

  • Köseoglu AT, Açikgöz V (1995) Determination of iron chlorosis with extractable iron analysis in peach leaves. J Plant Nutr 18:153–161

    Google Scholar 

  • Krouma A, Abdelly C (2003) Importance of iron use efficiency in common bean (Phaseolus vulgaris L.) for iron chlorosis resistance. J Plant Nutr Soil Sci 4:525–528

    Article  CAS  Google Scholar 

  • Krouma A, Gharsalli M, Abdelly C (2003) Differences in response to iron deficiency among some lines of common bean. J Plant Nutr 26:2295–2305

    Article  CAS  Google Scholar 

  • Krouma A, Drevon JJ, Abdelly C (2006) Genotypic variation of N2 fixing common bean (Phaseolus vulgaris L.) in response to iron deficiency. J Plant Physiol 163:1094–1100

    Article  PubMed  CAS  Google Scholar 

  • Malkin R (1987) Photosynthesis. In: Barber J (ed) The light reactions, topics in photosynthesis research, vol 8. Elsevier, Amsterdam, pp 495–525

  • Molassiotis A, Tanou G, Diamantidis G, Patakas A, Therios L (2006) Effects of 4-month Fe deficiency exposure on Fe reduction mechanism, photosynthetic gas exchange, chlorophyll fluorescence and antioxidant defense in two peach rootstocks differing in Fe deficiency tolerance. J Plant Physiol 163:176–185

    Article  PubMed  CAS  Google Scholar 

  • Moran JF, Klucas RV, Grayer RJ, Abian J, Becana M (1997) Complexes of iron with phenolic compounds from soybean nodules and other legume tissues: prooxidant and antioxidant properties. Free Radical Biol Med 22:861–870

    Article  CAS  Google Scholar 

  • Moreau S, Meyer JM, Puppo A (1995) Uptake of iron by symbiosomes and bacteroids from soybean nodules. FEBS Letters 361:225–228

    Article  PubMed  CAS  Google Scholar 

  • Parsons R, Raven JA, Sorent JI (1995) Translation of iron in the N2-fixing stem nodules of sesbania rostrata (Brem). J Exp Bot 46:291–296

    Article  CAS  Google Scholar 

  • Rai R, Singh SN, Prasad V (1982) Effect of pressmud-amended pyrite on symbiotic N2-fixation, active iron contents of nodules, grain yield and quality of chickpea (Cicer arietinum L.) lines in calcareous soil. J Plant Nutr 5:905–913

    CAS  Google Scholar 

  • Rai R, Prasad V, Choudhury SK, Sinha NP (1984) Iron nutrition and symbiotic N2 fixation of lentil (Lens culinaris) lines in calcareous soil. J Plant Nutr 7:399–405

    Article  CAS  Google Scholar 

  • Ranieri A, Castagna A, Baldan B, Soldatini GF (2001) Iron deficiency differently affects peroxidase isoforms in sunflower. J Exp Bot 52:25–35

    Article  PubMed  CAS  Google Scholar 

  • Rutherford AW (1985) Orientation of EPR signals arising from components in photosystem II membranes. Biochim Biophys Acta 807:189–201

    Article  CAS  Google Scholar 

  • Sandmann G (1985) Consequences of iron deficiency on photosynthetic and respiratory electron transport in blue-green algae. Photosynth Res 6:261–272

    Article  CAS  Google Scholar 

  • Scebba F, Sebastiani L, Vitagliano C (1999) Protective enzymes against activated oxygen species in wheat (Triticum aestivum L.) seedlings: responses to cold acclimation. J Plant Physiol 155:762–768

    CAS  Google Scholar 

  • Sheokand S, Dhandi S, Swaraj K (1995) Studies on nodule functioning and hydrogen peroxide scavenging enzymes under salt stress in chickpea nodules. Plant Physiol Biochem 33:561–566

    CAS  Google Scholar 

  • Spence MJ, Henzl MT, Lammers PJ (1991) The structure of a Phaseolus vulgaris cDNA encoding the iron storage protein ferritin. Plant Mol Biol 117:499–504

    Article  Google Scholar 

  • Swaraj K, Bishnoi NR (1999) Effect of salt stress on nodulation and nitrogen fixation in legumes. Indian J Exp Biol 37:843–848

    PubMed  CAS  Google Scholar 

  • Tang C, Robson AD, Dilworth MJ (1990) The role of iron in nodulation and nitrogen fixation in Lupinus angustifolius L. New Phytol 114:173–182

    Article  CAS  Google Scholar 

  • Terry N, Zayed AM (1995) Physiology and biochemistry of leaves under iron deficiency. In: Abadia J (ed) Iron nutrition in soils and plants. Kluwer, Dordrecht, pp 283–294

    Google Scholar 

  • Thoiron S, Pascal N, Briat JF (1997) Impact of iron deficiency and iron re-supply during the early stages of vegetative development in maize (Zea mais L.). Plant Cell Environ 20:1051–1060

    Article  CAS  Google Scholar 

  • Wilson DO, Reisenauer HM (1963) Determination of leghaemoglobin in legume nodules. Anal Biochem 6:27–30

    Article  CAS  Google Scholar 

  • Wittemberg JB, Wittemberg BA, Day DA, Udvardi MK, Appleby CA (1996) Siderophore-bound iron in the peribacteroïd space of soybean root nodules. Plant Soil 178:161–169

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krouma Abdelmajid.

Additional information

Communicated by A. Tukiendorf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdelmajid, K., Karim, B.H. & Chedly, A. Symbiotic response of common bean (Phaseolus vulgaris L.) to iron deficiency. Acta Physiol Plant 30, 27–34 (2008). https://doi.org/10.1007/s11738-007-0087-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-007-0087-5

Keywords

Navigation