Skip to main content
Log in

Daily rhythm of MnSOD in the C3-CAM intermediate Clusia fluminensis Planch. et Triana.

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The C3-CAM intermediate plant Clusia fluminensis under well-watered at low light conditions opens stomata during the light period. In leaf extracts of this plant we have found two copper-zinc superoxide dismutases (CuZnSODs) and two manganese SODs: MnSOD-like protein (MnSOD II) and MnSOD I. Daily rhythm of the MnSOD I shows maximum activity during the afternoon hours and it is accompanied by only a very small tendency to increase in catalase (CAT) activity and lowering of citrate level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CAT:

Catalase

DTT:

Dithiothreitol

EDTA:

Ethylenediaminetetraacetic acid

MnSOD:

Mn-superoxide dismutase

CuZnSOD:

CuZn-superoxide dismutase

PAGE:

Polyacrylamide gel electrophoresis

PEPC:

Phosphoenolpyruvate carboxylase

PPFD:

Photosynthetic photon flux density

PVPP:

Polyvinylpolypyrrolidone

ROS:

Reactive oxygen species

SDS:

Sodium dodecyl sulphate

TCA:

Tricarboxylic acid cycle

References

  • Aebi H (1984) Catalase in vitro. In: Methods in enzymology, vol 105. Academic, New York, pp 121–126

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  PubMed  CAS  Google Scholar 

  • Bartosz G (1997) Oxidative stress in plants. Acta Physiol Plant 19:47–64

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  PubMed  CAS  Google Scholar 

  • Borland AM, Taybi T (2004) Synchronization of metabolic processes in plants with crassulacean acid metabolism. J Exp Bot 55:1255–1265

    Article  PubMed  CAS  Google Scholar 

  • Borland AM, Griffiths H, Maxwell C, Broadmeadow MSJ, Fordham MC (1996) CAM induction in Clusia minor L. during the transition from wet to dry season in Trynidad: the role of organic acid speciation and decarboxylation. Plant Cell Environ 19:655–664

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Castillo F (1996) Antioxidative protection in the inducible CAM plant Sedum album L. following the imposition of severe water stress and recovery. Oecologia 107:469–477

    Article  Google Scholar 

  • Dat J, Vandenabeele S, Vranová E, van Montagu M, Inzé D, van Breusegem F (2000) Dual action of active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  PubMed  CAS  Google Scholar 

  • Desikan R, Mackerness SA-H, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis trancriptome by oxidative stress. Plant Physiol 127:159–172

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford University Press, New York, p 936

  • Herzog B, Grams TEE, Haag-Kerwer A, Ball E, Franco AC, Lüttge U (1999) Expression of modes of photosynthesis (C3, CAM) in Clusia cruiva Camb. in a cerrado gallery forest transect. Plant Biol 1:357–364

    CAS  Google Scholar 

  • Inzé D, van Montagu M (1995) Oxidative stress in plants. Curr Opin Biotechnol 6:153–158

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Libik M, Konieczny R, Surówka E, Miszalski Z (2005) Superoxide dismutase activity in organs of Mesembryanthemum crystallinum L. at different stages of CAM development. Acta Biol Cracov Ser Bot 47:199–204

    Google Scholar 

  • Lüttge U (1999) One morphotype, three physiotypes: sympatric species of Clusia with obligate C3 photosynthesis, obligate CAM and C3-CAM intermediate behaviour. Plant Biol 1:138–148

    Google Scholar 

  • Lüttge U (2000) Light-stress and crassulacean acid metabolism. Phyton 40:65–82

    Google Scholar 

  • Lüttge U (2004) Ecophysiology of crassulacean acid metabolism (CAM). Ann Bot 93:629–652

    Article  PubMed  CAS  Google Scholar 

  • de Mattos EA, Lüttge U (2001) Chlorophyll fluorescence and organic acid oscillation during transition from CAM to C3-photosynthesis in Clusia minor L. (Clusiaceae). Ann Bot 88:457–463

    Article  CAS  Google Scholar 

  • Maxwell K, Borland AM, Haslam RP, Helliker BR, Roberts A, Griffiths H (1999) Modulation of rubisco activity during the diurnal phases of the crassulacean acid metabolism plant Kalanchoe daigremontiana. Plant Physiol 121:849–856

    Article  PubMed  CAS  Google Scholar 

  • Miszalski Z, Ślesak I, Niewiadomska E, Baczek-Kwinta R, Lüttge U, Ratajczak R (1998) Subcellular localization and stress responses of superoxide dismutase isoforms from leaves in the C3-CAM intermediate halophyte Mesembryanthemum crystallinum L. Plant Cell Environ 21:169–179

    Article  CAS  Google Scholar 

  • Miszalski Z, Kornas A, Gawronska K, Ślesak I, Niewiadomska E, Kruk J, Christian AL, Fischer-Schliebs E, Krish R, Lüttge U (2007) Ecophysiological aspects of mitochondrial MnSOD activity in species of Clusia with obligate C3-photosynthesis and C3/CAM intermediate behaviour. Biol Plant 51:86–92

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Möllering H (1974) Malat. Bestimmung mit Malat-Dehydrogenase und Glutamat-Oxalacetat-Transaminase. In: Bergmeyer HU (ed) Methoden der Enzymologie. Academic, New York, pp 1636–1639

    Google Scholar 

  • Möllering H (1985) Citrate. Determination with citrate lyase, MDH and LDH. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic, New York, pp 2–12

    Google Scholar 

  • Niewiadomska E, Miszalski Z, Ślesak I, Ratajczak R (1999) Catalase activity during C3-CAM transition in Mesembryanthemum crystallinum L. leaves. Free Rad Res 31:S251–S256

    Article  CAS  Google Scholar 

  • Niewiadomska E, Karpinska B, Romanowska E, Ślesak I, Karpinski S (2004) A salinity-induced C3-CAM transition increases energy conservation in the halophyte Mesembryanthemum crystallinum L. Plant Cell Physiol 45:789–794

    Article  PubMed  CAS  Google Scholar 

  • Roberts A, Borland AM, Griffiths H (1997) Discrimination processes and shifts in carboxylation during the phases of crassulacean acid metabolism. Plant Physiol 113:1283–1292

    PubMed  CAS  Google Scholar 

  • Salin ML, Bridges SM (1981) Localization of superoxide dismutases in chloroplasts from Brassica campestris. Z Pflanzenphysiol 99:37–45

    Google Scholar 

  • Scandalios JG (1993) Oxygen stress and superoxide dismutases. Plant Physiol 101:7–12

    PubMed  CAS  Google Scholar 

  • Schröder Ch (2000) Vergleich von Isoenzymmustern verschidener Vertreter der Gattung Clusia L.: taxonomischer Vergleich und Versuch einer Stammbaumerstellung. University of Technology of Darmstadt, Germany, pp 1–35

    Google Scholar 

  • Streller S, Krömer S, Wingsle G (1994) Isolation and purification of mitochondrial Mn-superoxide dismutase from the gymnosperm Pinus sylvestris L. Plant Cell Physiol 35(6):859–867

    PubMed  CAS  Google Scholar 

  • Ślesak I, Miszalski Z (2003) Superoxide dismutase-like protein from roots of the intermediate C3-CAM plant Mesembryanthemum crystallinum in in vitro culture. Plant Sci 164:497–505

    Article  CAS  Google Scholar 

  • Ślesak I, Miszalski Z, Karpinska B, Niewiadomska E, Ratajczak R, Karpinski S (2002) Redox control of oxidative stress responses in the C3-CAM intermediate plant Mesembryanthemum crystallinum. Plant Physiol Biochem 40:669–677

    Article  Google Scholar 

  • Ślesak I, Libik M, Karpinska B, Karpinski S, Miszalski Z (2007) The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochim Pol (in press)

  • Van Breusegem F, Vranová E, Dat JF, Inzé D (2001) The role of active oxygen species in plant signal transduction. Plant Sci 161:405–414

    Article  Google Scholar 

  • Winter K, Smith JAC (1996) Crassulacean acid metabolism. Current status and perspectives. In: Winter K, Smith JAC (eds) Crassulacean acid metabolism. Biochemistry, ecophysiology and evolution. Springer, Berlin, pp 389–426

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsanstalt für Luft und Raumfahrt (DLR) Germany, and EU grant Qol-2001 Integr. to the Institute of Plant Physiology Polish Academy of Science. This study was partly supported by the Polish MNiSW grant N30308331/2685.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Miszalski.

Additional information

Communicated by Z. Krupa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kornas, A., Ślesak, I., Gawronska, K. et al. Daily rhythm of MnSOD in the C3-CAM intermediate Clusia fluminensis Planch. et Triana.. Acta Physiol Plant 29, 369–374 (2007). https://doi.org/10.1007/s11738-007-0046-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-007-0046-1

Keywords

Navigation