Skip to main content

Activities of de-N-glycosylation are ubiquitously found in tomato plant

Abstract

Activities of two de-N-glycosylation enzymes, PNGase (peptide N 4(N-acetyl-glucosaminyl)asparagine amidase) and ENGase (endo N-acetyl-β-D-glucosaminidase), involved in the release of N-glycans from N-glycoproteins, were monitored in several organs of tomato plants (Lycopersicon esculentum, Mill., cv. Dombito) with a fluorescence-HPLC procedure using a resofurin-labelled N-glycopeptide substrate. PNGase and ENGase activities were detected in every organ assayed but with quantitative differences. The highest activities were found in the youngest parts of the plant, i.e. apical buds, flowers and leaf blades. PNGase activities were consistently higher than ENGase activities (three-fold in average). Both de-N-glycosylation activities were associated with high levels of proteins and protease activities. During fruit growth and ripening, these three parameters decreased notably. The ubiquitous detection of these enzyme activities in the different organs is probably associated with the previously characterized unconjugated N-glycans in tomato. The possible role of PNGase and ENGase degradation products (i.e. unconjugated N-glycans) are discussed in relation with their biological functions in plant development.

This is a preview of subscription content, access via your institution.

Abbreviations

Asn:

asparagine

Ara:

arabinose

Asp:

aspartic acid

ConA:

Concanavalin A

ENGase:

endo N-acetyl-β-D-glucosaminidase

Fuc:

fucose

GlcNAc:

N-acetylglucosamine

Man:

mannose

PNGase:

peptide N 4(N-acetyl-glucosaminyl)asparagine amidase

UNGs:

unconjugated N-glycans

Xyl:

xylose

References

  1. Berger S., Menudier A., Julien R., Karamanos Y. 1995a. Do de-N-glycosylation enzymes have important roles in plant cells? Biochimie, 77: 751–760.

    PubMed  Article  CAS  Google Scholar 

  2. Berger S., Menudier A., Julien R., Karamanos Y. 1995b. Endo-N-acetyl-β-D-glucosaminidase and peptide-N 4-(N-acetyl-glucosaminyl) asparagine amidase activities during germination of Raphanus sativus. Phytochemistry, 39: 481–487.

    PubMed  Article  CAS  Google Scholar 

  3. Berger S., Menudier A., Julien R., Karamanos Y. 1996. Regulation of de-N-glycosylation enzymes in germinating radish seeds. Plant Physiol., 112: 259–264.

    PubMed  CAS  Google Scholar 

  4. Bourgerie S., Karamanos Y., Berger S., Julien R. 1992. Use of resorufin-labelled N-glycopeptide in a high-performance liquid chromatography assay to monitor endoglycosidase activities during cultivation of Flavobacterium meningosepticum. Glycoconj. J., 9: 162–167.

    PubMed  Article  CAS  Google Scholar 

  5. Bourgerie S., Berger S., Strecker G., Julien R., Karamanos Y. 1994. A fluorescence high-performance liquid chromatography assay for enzymes acting on the di-N-acetylchitobiosyl part of asparagine-linked glycans. J. Biochem. Biophys. Meth., 28: 283–293.

    PubMed  Article  CAS  Google Scholar 

  6. Bradford M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye-binding. Anal. Biochem., 72: 248–254.

    PubMed  Article  CAS  Google Scholar 

  7. Cacan R., Duvet S., Kmiécik D., Labiau O., Mir A.M., Verbert A. 1998. “Glyco-deglyco” processes during the synthesis of N-glycoproteins. Biochimie, 80: 59–68.

    PubMed  Article  CAS  Google Scholar 

  8. Callis J. 1995. Regulation of protein degradation. Plant Cell, 7: 845–857.

    PubMed  Article  CAS  Google Scholar 

  9. Chang T., Kuo M.C., Khoo K.H., Inoue S., Inoue Y. 2000. Developmentally regulated expression of a peptide: N-glycanase during germination of rice seeds (Oryza sativa) and its purification and characterization. J. Biol. Chem., 275: 129–134.

    PubMed  Article  CAS  Google Scholar 

  10. Faugeron C., Lhernould S., Maes E., Lerouge P., Strecker G., Morvan H. 1997a. Tomato plant leaves also contain unconjugated N-glycans. Plant Physiol. Biochem., 35: 73–79.

    CAS  Google Scholar 

  11. Faugeron C., Lhernould S., Lemoine J., Costa G., Morvan H. 1997b. Identification of unconjugated N-glycans in strawberry plants. Plant Physiol. Biochem., 35: 891–895.

    CAS  Google Scholar 

  12. Faugeron C., Sakr S., Lhernould S., Michalski J.C., Delrot S., Morvan H. 1999. Long-distance transport and metabolism of unconjugated N-glycans in tomato plants. J. Exp. Bot., 50: 1669–1675.

    Article  CAS  Google Scholar 

  13. Ho L.C., Shaw A.F. 1977. Carbon economy and translocation of 14C in leaflets of the seventh leaf during leaf expansion. Ann. Bot., 41: 833–848.

    CAS  Google Scholar 

  14. James F., Brouquisse R., Pradet A., Raymond P. 1993. Changes in proteolytic activities in glucose-starved maize root tips. Regulation by sugars. Plant Physiol. Biochem. 31: 845–856.

    CAS  Google Scholar 

  15. Kimura Y, Takagi S, Shiraishi T. 1997. Occurence of free N-glycans in pea (Pisum sativum L.) seedlings. Biosci., Biotech. Biochem., 61: 924–926.

    CAS  Article  Google Scholar 

  16. Kimura Y., Kitahara E. 2000. Structural analysis of free N-glycans occurring in soybean seedlings and dry seeds. Biosci., Biotech. Biochem., 64: 1847–55.

    Article  CAS  Google Scholar 

  17. Kimura Y., Matsuo S. 2000. Free N-glycans already occur at an early stage of seed development. J. Biochem., 127: 1013–1019.

    PubMed  CAS  Google Scholar 

  18. Kimura Y., Matsuo S., Tsurusaki S., Kimura M., Hara-Nishimura I., Nishimura M. 2002. Subcellular localization of endo-β-N-acetylglucosaminidase and high-mannose type free N-glycans in plant cell. Biochem. Biophys. Acta, 1570: 38–46.

    PubMed  CAS  Google Scholar 

  19. Lerouge P., Cabanes-Macheteau M., Rayon C., Fitchette-Lainé A.C., Gomord V., Faye L. 1998. N-glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol. Biol., 38: 31–48.

    PubMed  Article  CAS  Google Scholar 

  20. Lhernould S., Karamanos Y., Bourgerie S., Strecker G., Julien R., Morvan H. 1992. Peptide-N 4-(Nacetyl-glucosaminyl)asparagine amidase (PNGase) activity could explain the occurrence of extracellular xylomannosides in a plant cell suspension. Glycoconj. J., 9: 191–197.

    PubMed  Article  CAS  Google Scholar 

  21. Lhernould S., Karamanos Y., Priem B., Morvan H. 1994. Carbon starvation increases endoglycosidase activities and production of unconjugated N-glycans in silene alba cell suspension cultures. Plant Physiol., 106: 779–784.

    PubMed  Article  CAS  Google Scholar 

  22. Pressman E., Bar-Tal A., Shaked R., Rosenfeld K. 1997. The development of tomato root system in relation to the carbohydrate status of the whole plant. Ann. Bot., 80: 533–538.

    Article  CAS  Google Scholar 

  23. Priem B., Solo-Kwan J., Wieruszeski J.M., Strecker G., Nazih H., Morvan H. 1990. Isolation and characterization of free glycans of the oligomannoside type from the extracellular medium of a plant cell suspension. Glycoconj. J., 7: 121–132.

    Article  CAS  Google Scholar 

  24. Priem B., Gitti R., Bush C.A., Gross K.C. 1993. Structure of ten free N-glycans in ripening tomato fruit. Plant Physiol., 102: 445–458.

    PubMed  Article  CAS  Google Scholar 

  25. Priem B., Morvan H., Gross KC. 1994. Unconjugated N-glycans as a new class of plant oligosaccharins. Biochem. Soc. Trans., 22: 398–402.

    PubMed  CAS  Google Scholar 

  26. Ramis C., Gomord V., Lerouge P., Faye L. 2001. Deglycosylation is necessary but not sufficient for activation of proconcanavalin A. J. Exp. Bot., 52: 911–917.

    PubMed  Article  CAS  Google Scholar 

  27. Sheldon P.S., Bowles D.J. 1992. The glycoprotein precursor of concanavalin A is converted to an active lectin by deglycosylation. EMBO J., 11: 1297–1301.

    PubMed  CAS  Google Scholar 

  28. Vuylstecker C., Cuvellier G., Berger S., Faugeron C., Karamanos Y. 2000. Evidence of two enzymes performing the de-N-glycosylation of proteins in barley: expression during germination, localization within the grain and set-up during grain formation. J. Exp. Bot., 51: 839–845.

    Article  Google Scholar 

  29. Yet M.G., Wold F. 1988. Purification and characterization of glycopeptide hydrolases from Jack Bean. J. Biol. Chem., 263: 118–122.

    PubMed  CAS  Google Scholar 

  30. Yunovitz H., Norman Livsey J., Gross K.C. 1996. Unconjugated Man5GlcNAc occurs in vegetative tissues of tomato. Phytochemistry, 42: 607–610.

    PubMed  Article  CAS  Google Scholar 

  31. Zeleny R., Altmann F., Praznik W. 1999. Structural characterization of the N-linked oligosaccharides from tomato fruit. Phytochemistry, 51: 19–210.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Henri Morvan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Faugeron, C., Mollet, JC., Karamanos, Y. et al. Activities of de-N-glycosylation are ubiquitously found in tomato plant. Acta Physiol Plant 28, 557 (2006). https://doi.org/10.1007/s11738-006-0051-9

Download citation

Key words

  • De-N-glycosylation
  • plant development
  • processing enzymes
  • tomato (Lycopersicon esculentum, Mill.)