Skip to main content
Log in

Activities of de-N-glycosylation are ubiquitously found in tomato plant

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Activities of two de-N-glycosylation enzymes, PNGase (peptide N 4(N-acetyl-glucosaminyl)asparagine amidase) and ENGase (endo N-acetyl-β-D-glucosaminidase), involved in the release of N-glycans from N-glycoproteins, were monitored in several organs of tomato plants (Lycopersicon esculentum, Mill., cv. Dombito) with a fluorescence-HPLC procedure using a resofurin-labelled N-glycopeptide substrate. PNGase and ENGase activities were detected in every organ assayed but with quantitative differences. The highest activities were found in the youngest parts of the plant, i.e. apical buds, flowers and leaf blades. PNGase activities were consistently higher than ENGase activities (three-fold in average). Both de-N-glycosylation activities were associated with high levels of proteins and protease activities. During fruit growth and ripening, these three parameters decreased notably. The ubiquitous detection of these enzyme activities in the different organs is probably associated with the previously characterized unconjugated N-glycans in tomato. The possible role of PNGase and ENGase degradation products (i.e. unconjugated N-glycans) are discussed in relation with their biological functions in plant development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Asn:

asparagine

Ara:

arabinose

Asp:

aspartic acid

ConA:

Concanavalin A

ENGase:

endo N-acetyl-β-D-glucosaminidase

Fuc:

fucose

GlcNAc:

N-acetylglucosamine

Man:

mannose

PNGase:

peptide N 4(N-acetyl-glucosaminyl)asparagine amidase

UNGs:

unconjugated N-glycans

Xyl:

xylose

References

  • Berger S., Menudier A., Julien R., Karamanos Y. 1995a. Do de-N-glycosylation enzymes have important roles in plant cells? Biochimie, 77: 751–760.

    Article  PubMed  CAS  Google Scholar 

  • Berger S., Menudier A., Julien R., Karamanos Y. 1995b. Endo-N-acetyl-β-D-glucosaminidase and peptide-N 4-(N-acetyl-glucosaminyl) asparagine amidase activities during germination of Raphanus sativus. Phytochemistry, 39: 481–487.

    Article  PubMed  CAS  Google Scholar 

  • Berger S., Menudier A., Julien R., Karamanos Y. 1996. Regulation of de-N-glycosylation enzymes in germinating radish seeds. Plant Physiol., 112: 259–264.

    PubMed  CAS  Google Scholar 

  • Bourgerie S., Karamanos Y., Berger S., Julien R. 1992. Use of resorufin-labelled N-glycopeptide in a high-performance liquid chromatography assay to monitor endoglycosidase activities during cultivation of Flavobacterium meningosepticum. Glycoconj. J., 9: 162–167.

    Article  PubMed  CAS  Google Scholar 

  • Bourgerie S., Berger S., Strecker G., Julien R., Karamanos Y. 1994. A fluorescence high-performance liquid chromatography assay for enzymes acting on the di-N-acetylchitobiosyl part of asparagine-linked glycans. J. Biochem. Biophys. Meth., 28: 283–293.

    Article  PubMed  CAS  Google Scholar 

  • Bradford M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye-binding. Anal. Biochem., 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Cacan R., Duvet S., Kmiécik D., Labiau O., Mir A.M., Verbert A. 1998. “Glyco-deglyco” processes during the synthesis of N-glycoproteins. Biochimie, 80: 59–68.

    Article  PubMed  CAS  Google Scholar 

  • Callis J. 1995. Regulation of protein degradation. Plant Cell, 7: 845–857.

    Article  PubMed  CAS  Google Scholar 

  • Chang T., Kuo M.C., Khoo K.H., Inoue S., Inoue Y. 2000. Developmentally regulated expression of a peptide: N-glycanase during germination of rice seeds (Oryza sativa) and its purification and characterization. J. Biol. Chem., 275: 129–134.

    Article  PubMed  CAS  Google Scholar 

  • Faugeron C., Lhernould S., Maes E., Lerouge P., Strecker G., Morvan H. 1997a. Tomato plant leaves also contain unconjugated N-glycans. Plant Physiol. Biochem., 35: 73–79.

    CAS  Google Scholar 

  • Faugeron C., Lhernould S., Lemoine J., Costa G., Morvan H. 1997b. Identification of unconjugated N-glycans in strawberry plants. Plant Physiol. Biochem., 35: 891–895.

    CAS  Google Scholar 

  • Faugeron C., Sakr S., Lhernould S., Michalski J.C., Delrot S., Morvan H. 1999. Long-distance transport and metabolism of unconjugated N-glycans in tomato plants. J. Exp. Bot., 50: 1669–1675.

    Article  CAS  Google Scholar 

  • Ho L.C., Shaw A.F. 1977. Carbon economy and translocation of 14C in leaflets of the seventh leaf during leaf expansion. Ann. Bot., 41: 833–848.

    CAS  Google Scholar 

  • James F., Brouquisse R., Pradet A., Raymond P. 1993. Changes in proteolytic activities in glucose-starved maize root tips. Regulation by sugars. Plant Physiol. Biochem. 31: 845–856.

    CAS  Google Scholar 

  • Kimura Y, Takagi S, Shiraishi T. 1997. Occurence of free N-glycans in pea (Pisum sativum L.) seedlings. Biosci., Biotech. Biochem., 61: 924–926.

    Article  CAS  Google Scholar 

  • Kimura Y., Kitahara E. 2000. Structural analysis of free N-glycans occurring in soybean seedlings and dry seeds. Biosci., Biotech. Biochem., 64: 1847–55.

    Article  CAS  Google Scholar 

  • Kimura Y., Matsuo S. 2000. Free N-glycans already occur at an early stage of seed development. J. Biochem., 127: 1013–1019.

    PubMed  CAS  Google Scholar 

  • Kimura Y., Matsuo S., Tsurusaki S., Kimura M., Hara-Nishimura I., Nishimura M. 2002. Subcellular localization of endo-β-N-acetylglucosaminidase and high-mannose type free N-glycans in plant cell. Biochem. Biophys. Acta, 1570: 38–46.

    PubMed  CAS  Google Scholar 

  • Lerouge P., Cabanes-Macheteau M., Rayon C., Fitchette-Lainé A.C., Gomord V., Faye L. 1998. N-glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol. Biol., 38: 31–48.

    Article  PubMed  CAS  Google Scholar 

  • Lhernould S., Karamanos Y., Bourgerie S., Strecker G., Julien R., Morvan H. 1992. Peptide-N 4-(Nacetyl-glucosaminyl)asparagine amidase (PNGase) activity could explain the occurrence of extracellular xylomannosides in a plant cell suspension. Glycoconj. J., 9: 191–197.

    Article  PubMed  CAS  Google Scholar 

  • Lhernould S., Karamanos Y., Priem B., Morvan H. 1994. Carbon starvation increases endoglycosidase activities and production of unconjugated N-glycans in silene alba cell suspension cultures. Plant Physiol., 106: 779–784.

    Article  PubMed  CAS  Google Scholar 

  • Pressman E., Bar-Tal A., Shaked R., Rosenfeld K. 1997. The development of tomato root system in relation to the carbohydrate status of the whole plant. Ann. Bot., 80: 533–538.

    Article  CAS  Google Scholar 

  • Priem B., Solo-Kwan J., Wieruszeski J.M., Strecker G., Nazih H., Morvan H. 1990. Isolation and characterization of free glycans of the oligomannoside type from the extracellular medium of a plant cell suspension. Glycoconj. J., 7: 121–132.

    Article  CAS  Google Scholar 

  • Priem B., Gitti R., Bush C.A., Gross K.C. 1993. Structure of ten free N-glycans in ripening tomato fruit. Plant Physiol., 102: 445–458.

    Article  PubMed  CAS  Google Scholar 

  • Priem B., Morvan H., Gross KC. 1994. Unconjugated N-glycans as a new class of plant oligosaccharins. Biochem. Soc. Trans., 22: 398–402.

    PubMed  CAS  Google Scholar 

  • Ramis C., Gomord V., Lerouge P., Faye L. 2001. Deglycosylation is necessary but not sufficient for activation of proconcanavalin A. J. Exp. Bot., 52: 911–917.

    Article  PubMed  CAS  Google Scholar 

  • Sheldon P.S., Bowles D.J. 1992. The glycoprotein precursor of concanavalin A is converted to an active lectin by deglycosylation. EMBO J., 11: 1297–1301.

    PubMed  CAS  Google Scholar 

  • Vuylstecker C., Cuvellier G., Berger S., Faugeron C., Karamanos Y. 2000. Evidence of two enzymes performing the de-N-glycosylation of proteins in barley: expression during germination, localization within the grain and set-up during grain formation. J. Exp. Bot., 51: 839–845.

    Article  Google Scholar 

  • Yet M.G., Wold F. 1988. Purification and characterization of glycopeptide hydrolases from Jack Bean. J. Biol. Chem., 263: 118–122.

    PubMed  CAS  Google Scholar 

  • Yunovitz H., Norman Livsey J., Gross K.C. 1996. Unconjugated Man5GlcNAc occurs in vegetative tissues of tomato. Phytochemistry, 42: 607–610.

    Article  PubMed  CAS  Google Scholar 

  • Zeleny R., Altmann F., Praznik W. 1999. Structural characterization of the N-linked oligosaccharides from tomato fruit. Phytochemistry, 51: 19–210.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henri Morvan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faugeron, C., Mollet, JC., Karamanos, Y. et al. Activities of de-N-glycosylation are ubiquitously found in tomato plant. Acta Physiol Plant 28, 557–565 (2006). https://doi.org/10.1007/s11738-006-0051-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-006-0051-9

Key words

Navigation