Skip to main content
Log in

Exploitation of flow cytometry for plant breeding

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

In this review, the different applications of flow cytometry in plant breeding are highlighted. Four main breeding related purposes can be distinguished for flow cytometry: (i) Characterisation of available plant material, including screening of possible parent plants for breeding programs as well as evaluation of population biodiversity; (ii) Offspring screening after interspecific, interploidy or aberrant crosses; (iii) Ploidy level determination after haploidization and polyploidization treatments and (iv) Particle sorting, that allows separation of plant cells based on morphological or fluorescent characteristics. An overview and discussion of these various applications indicates that flow cytometry is a relatively quick, cheap and reliable tool for many breeding related objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DAPI:

4′, 6-diamidino-2-phenylindol

EB:

ethidium bromide

FCM:

flow cytometry

FDA:

fluorescein diacetate

FSC:

forward scatter

ORY:

oryzalin

PI:

propidium iodide

PMT:

photomultiplier

SSC:

sideward scatter

TRI:

trifluralin

References

  • Arumuganathan K., Earle E. 1991. Estimation of nuclear DNA content of plants by flow cytometry. Plant Mol. Biol. Rep. 9: 229–233.

    CAS  Google Scholar 

  • Bennett M., Leitch I. 1995. Nuclear DNA amount in angiosperms. Ann. Bot. 76: 113–176.

    Article  CAS  Google Scholar 

  • Bennett M., Bhandol P., Leitch I. 2000. Nuclear DNA amounts in angiosperms and their modern uses: 807 new estimates. Ann. Bot. 86: 859–909.

    Article  CAS  Google Scholar 

  • Crespel L., Gudin S., Meynet J., Zhang D. 2002. AFLP-based estimation of 2n gametophytic heterozygosity in two parthenogenetically derived dihaploids of Rosa hybrida L. Theor. Appl. Genet. 104: 451–456.

    Article  PubMed  CAS  Google Scholar 

  • Crissman H., Steinkamp J. 1973. Rapid simultaneous measurement of DNA, protein and cell volume in single cells from large mammalian cell populations. J. Cell Biol. 59: 766–771.

    Article  PubMed  CAS  Google Scholar 

  • De Laat A., Göhde W., Vogelzang M. 1987. Determination of ploidy of single plants and plant populations by flow cytometry. Plant Breeding 99: 303–307.

    Article  Google Scholar 

  • De Schepper S., Leus L., Eeckhaut T., Van Bockstaele E., Debergh P., De Loose M. 2004. Somatic polyploid petals: regeneration offers new roads for breeding Belgian pot azaleas. Plant Cell Tiss. Org. Cult. 76: 183–188.

    Article  Google Scholar 

  • De Schepper S., Leus L., Mertens M., Van Bockstaele E., Debergh P., De Loose M. 2001. Flow cytometric analysis of ploidy in Rhododendron (subgenus Tsutsusi). HortScience, 36: 125–127.

    Google Scholar 

  • Dolezel J. 1991. Flow cytometric analysis of nuclear DNA content in higher plants. Phytochem. Anal. 2: 143–154.

    Article  CAS  Google Scholar 

  • Dolezel, J. 1997. Applications of flow cytometry for the study of plant genomes. J. Appl. Genet. 38:285–302.

    Google Scholar 

  • Dolezel J., Bartos J. 2005. Plant DNA flow Cytometry and estimation of nuclear genome size. Ann. Bot. 95: 99–110.

    Article  PubMed  CAS  Google Scholar 

  • Dolezel J., Binarova P., Lucretti S. 1989. Analysis of nuclear DNA content in plant cells by flow cytometry. Biol. Plant. 31: 113–120.

    Google Scholar 

  • Dolezel J., Göhde W. 1995. Sex determination in dioecious plants Melandrium album and M. rubrum using high-resolution flow cytometry. Cytometry 19: 103–106.

    Article  PubMed  CAS  Google Scholar 

  • Dolezel J., Sgorbati S., Lucretti S. 1992. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol. Plant. 85: 625–631.

    Article  CAS  Google Scholar 

  • Eeckhaut T., Samijn G., Van Bockstaele E. 2003. Interspecific breeding in the Rhododendron genus involving R. simsii hybrids. Acta Horticult. 612: 165–172.

    Google Scholar 

  • Eeckhaut T., Van Huylenbroeck J., De Riek J., Van Bockstaele E. 2004. Interspecific hybridization between Hibiscus syriacus L and Hibiscus paramutabilis Bailey. Acta Horticult. 630: 85–90.

    Google Scholar 

  • Galbraith D. 1989. Analysis of higher plants by flow cytometry and cell sorting. Int. Rev. Cytol. 116: 165–228.

    Google Scholar 

  • Galbraith D. 1990. Flow cytometric analysis of plant genomes. Methods Cell Biol. 33: 549–561.

    PubMed  CAS  Google Scholar 

  • Galbraith D., Harkins K., Maddox J., Ayres N., Sharma D., Firoozabady E. 1983. Rapid flow cytometrical analysis of the cell cycle in intact plant tissues. Science 220: 1049–1051.

    Article  CAS  PubMed  Google Scholar 

  • Goldblatt P. 1980. Polyploidy in angiosperms. In: Polyploidy, ed. by Bu W. Lewis. Plenum Press, New York: 219–239.

    Google Scholar 

  • Herzenberg L., Parks D., Sahaf B., Perez O., Roederer M., Herzenberg L. 2002. The history and future of the fluorescence activated cell sorter and flow cytometry: a view from Stanford. Clinical Chem. 48: 1819–1827.

    CAS  Google Scholar 

  • Horner H., Hall V., Vargas-Olvera M. 1993. Isolation, sorting, and characterization of uni- and binucleate tapetal protoplasts from anthers of normal and Texas cytoplasmic male-sterile Zea mays L. Protoplasma 173: 48–57.

    Article  Google Scholar 

  • Janaki Ammal E., Enoch I., Bridgewater M. 1950. Chromosome numbers in species of Rhododendron. The Rhododendron Yearbook. Royal Horticult. Soc. 5: 78–91.

    Google Scholar 

  • Kachel V., Messeschmidt R., Hummel P. 1990. Eight-Parameter PC-AT Based Flow Cytometric Data System. Cytometry 11: 805–812.

    Article  PubMed  CAS  Google Scholar 

  • Li L., Arumuganathan K. 2003. Microcloning of maize chromosome 9 by using a flow-sorting technique. Plant Mol. Biol. Rep. 21: 359–364.

    Article  CAS  Google Scholar 

  • Laurie D., Bennett M. 1985. Nuclear DNA content in the genera Zea and Sorghum: intergeneric, interspecific, and intraspecific variation. Heredity 55: 307–313.

    Google Scholar 

  • Masterson J. 1994. Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264: 421–424.

    Article  PubMed  Google Scholar 

  • Moyne A., Souq F., Yean L., Brown S., Boulay M., Sangwan-Norreel B. 1993. Relationship between cell ploidy and regeneration capacity of long term Rosa hybrida cultures. Plant Sci. 93: 159–168.

    Article  CAS  Google Scholar 

  • Ochatt S., Mousset-Déclas C., Rancillac M. 2000. Fertile pea plants regenerate from protoplasts when calluses have not undergone endoreduplication. Plant Sci. 156: 177–183.

    Article  CAS  PubMed  Google Scholar 

  • Osborn T., Pires J., Birchler J., Auger D., Chen Z., Lee H., Comai L., Madlung A., Doerge R., Colot V., Martienssen R. 2003. Understanding mechanisms of novel gene expression in polyploids. Trends in Genetics 19: 141–147.

    Article  PubMed  CAS  Google Scholar 

  • Portugal J., Waring M. 1988. Assignment of DNA binding sites for 4′,6-diamidino-2-phenylindole and bisbenzimide (Hoechst 33258). A comparative footprinting study. Biochim. Biophys. Acta 949: 158–168.

    PubMed  CAS  Google Scholar 

  • Shapiro H. 2003. Practical flow Cytometry, 4th edn. Wiley Liss, New York, 736 pp.

    Google Scholar 

  • Soltis D., Soltis P. 1993. Molecular data and the dynamic nature of polyploidy. Critical Rev. Plant Sci. 12: 243–273.

    CAS  Google Scholar 

  • Stebbins G. 1971. Chromosomal evolution of higher plants. Edward Arnold Ltd, London, 216 pp.

    Google Scholar 

  • Tusa N., Loredana A., Ferrante S., Lucretti S., Scarano M. 2002. Identification of zygotic and nucellar seedlings in Citrus interploid crosses by means of isozymes, flow cytometry and ISSR-PCR. Cell. Mol. Biol. Letters 7: 703–708.

    CAS  Google Scholar 

  • Van Dyke M., Dervan P. 1983. Chromomycin, mithramycin, and olivomycin binding sites on heterogenous deoxyribonucleic acid. Footprinting with (methidiumpropyl-EDTA) iron (II). Biochemistry 22: 2373–2377.

    Article  PubMed  Google Scholar 

  • Van Huylenbroeck J., Leus L., Van Bockstaele E. 2005. Interploidy crosses in roses: use of triploids. Acta Horticulturae 690: 109–112.

    Google Scholar 

  • Wendel J. 2000. Genome evolution in polyploids. Plant Mol. Biol. 42: 225–249.

    Article  PubMed  CAS  Google Scholar 

  • Yokoya K., Roberts A., Mottley J., Lewis R., Brandham P. 2000. Nuclear DNA amounts in roses. Ann. Bot. 85: 557–561.

    Article  CAS  Google Scholar 

  • Zlesak D., Thill C., Anderson N. 2005. Trifluralin-medated polyploidization of Rosa chinensis minima (Sims) Voss seedlings. Euphytica 141: 281–290.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eeckhaut, T., Leus, L. & Van Huylenbroeck, J. Exploitation of flow cytometry for plant breeding. Acta Physiol Plant 27, 743–750 (2005). https://doi.org/10.1007/s11738-005-0079-2

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-005-0079-2

Key words

Navigation