Skip to main content
Log in

Effect of hypoxia on photosynthetic activity and antioxidative response in gametophores of Mnium undulatum

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The effects of hypoxia caused by complete submerging of Mnium undulatum gametophores in water, on their photosynthetic activity and the activity of two antioxidative enzymes: superoxide dismutase (SOD) and catalase (CAT) were investigated. The net photosynthesis was strongly inhibited throughout the experiment, and the strong drop in the maximum quantum yield of the PSII (Fv/Fm) was also observed. Three classes of SOD: MnSOD, FeSOD, Cu/ZnSOD and three isoforms of Cu/ZnSOD were identified. A significant decrease in activity of MnSOD, FeSOD and one Cu/ZnSOD isoform was observed after 24 and 48 h of hypoxia. FeSOD activity decreased already after 1 h of submerging in water and its activity remained at the low level during whole period of the experiment. CAT activity was also strongly inhibited in response to hypoxia stress. The obtained results suggest relationships between photosynthetic activity and antioxidative system in M. undulatum gametophores under oxygen deficiency stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumin

CAT:

catalase

DTT:

dithiothreitol

EDTA:

ethylenediamine tetraacetic acid

EGTA:

ethyleneglycol-bis(beta-aminoethylether)-N,N′-tetracet ic acid

Fm :

maximum chlorophyll a fluorescence yield

Fo :

minimum chlorophyll a fluorescence yield

Fv :

the difference between F m and F o

Fv/Fm :

maximum quantum yield of PSII

NBT:

nitroblue tetrazolium salt

PAGE:

polyacrylamide gel electrophoresis

PAR:

photosynthetically active radiation

Pn :

net photosynthesis intensity

PSII:

photosystem II

ROS:

reactive oxygen species

SOD:

superoxide dismutase

Tricine:

N-[tris-(hydroxymethyl)methyl]glycine

Tris:

tris(hydroxymethyl)aminomethane

TEMED:

N,N,N′,N′-tetramethylethylenediamine

References

  • Aebi H. 1984. Catalase in vitro. In: Methods in Enzymology, Vol. 105, Academic Press, Inc: 121–126.

  • Alscher R.G., Donahue J.L., Cramer C.L. 1997. Reactive oxygen species and antioxidants: relationships in green cells. Physiol. Plant. 100: 224–233.

    Article  CAS  Google Scholar 

  • Alscher R.G., Erturk N., Heath L.S. 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 53: 1331–1341.

    Article  PubMed  CAS  Google Scholar 

  • Bartosz G. 1997. Oxidative stress in plants. Acta Physiol. Plant. 19: 47–64.

    CAS  Google Scholar 

  • Beauchamp C., Fridovich I. 1971. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44: 276–287.

    Article  PubMed  CAS  Google Scholar 

  • Blokhina O.B., Chirkova T.V., Fagerstedt K.V. 2001. Anoxic stress leads to hydrogen peroxide formation in plant cells. J. Exp. Bot. 52: 1179–1190.

    Article  PubMed  CAS  Google Scholar 

  • Blokhina O., Virolainen E., Fagerstedt K.V. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot. 91: 179–194.

    Article  PubMed  CAS  Google Scholar 

  • Bowler C., van Montagu M., Inzé D. 1992. Superoxide dismutase and stress tolerance. Annu. Rev. Plant. Physiol. Mol. Biol. 43: 83–116.

    Article  CAS  Google Scholar 

  • Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Bragina T.V., Drozdova I.S., Ponomareva Y.V., Alekhin V.I., Grineva G.M. 2002. Photosynthesis, respiration, and transpiration in maize seedlings under hypoxia induced by complete flooding. Dokl. Biol. Sci. 384: 274–277.

    Article  PubMed  CAS  Google Scholar 

  • Christov K., Bakardjieva N.T. 1999. Effect of calcium and zinc on subcellular distribution, activity and thermosensitivity of superoxide dismutase in Mnium affine., Biol. Plant. 42: 57–63.

    Article  CAS  Google Scholar 

  • Dat J., Vandenabeele S., Vranová E., Van Montagu M., Inzé D., Van Breusegem F. 2000. Dual action of the active oxygen species during plant stress responses. CMLS Cell Mol. Life Sci. 57: 779–795.

    Article  CAS  Google Scholar 

  • Dat J.F., Capelli N., Folzer H., Bourgeande P., Badot P-M. 2004. Sensing and signalling during plant flooding. Plant Physiol. Biochem. 42: 273–282.

    Article  PubMed  CAS  Google Scholar 

  • Drew M.C. 1997. Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 223–250.

    Article  PubMed  CAS  Google Scholar 

  • Foyer C.H., Noctor G. 2000. Oxygen processing in photosynthesis: regulation and signalling. New Phytol. 146: 359–388.

    Article  CAS  Google Scholar 

  • Ladygin V.G. 1999. Functional activity and chloroplast structure in leaves of Pisum sativum and Glycine max under conditions of root hypoxia and anoxia. Rus. J. Plant Physiol. 46: 207–218.

    CAS  Google Scholar 

  • Liao C-T., Lin C-H. 2001. Physiological adaptation of crop plants to flooding stress. Proc. Natl. Sci. Counc. ROC (B) 25: 148–157.

    CAS  Google Scholar 

  • Maxwell K., Johnson G.N. 2000. Chlorophyll fluorescence — a practical guide. J. Exp. Bot. 51: 659–668.

    Article  PubMed  CAS  Google Scholar 

  • Miszalski Z., lesak I., Niewiadomska E., B czek-Kwinta R., Lüttge U., Ratajczak R. 1998. Subcellular localization and stress responses of superoxide dismutase isoforms from leaves in the C3-CAM intermediate halophyte Mesembryanthemum crystallinum L. Plant Cell Environ. 21: 169–179.

    Article  CAS  Google Scholar 

  • Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7: 405–410.

    Article  PubMed  CAS  Google Scholar 

  • Mustroph A., Albrecht G. 2003. Tolerance of crop plants to oxygen deficiency stress: fermentative activity and photosynthetic capacity of entire seedlings under hypoxia and anoxia. Physiol. Plant. 117: 508–521.

    Article  PubMed  CAS  Google Scholar 

  • Proctor M. 2001. Patterns of desiccation tolerance and recovery in bryophytes. Plant Growth Regul. 35: 147–156.

    Article  CAS  Google Scholar 

  • Rzepka A., Krupa J., Rut G. 2002. The influence of anareobic conditions on the dark respiration of moss gametophytes. Zesz. Probl. Post. Nauk Rol. 481: 251–258.

    Google Scholar 

  • Scandalios J.G. 1994. Regulation and properties of plant catalases. In: Causes of photooxidative stress and amelioration of defense systems in plants. Foyer Ch., Mullineaux P. M., (ed.), Boca Raton, Florida: CRC Press: 275–316.

    Google Scholar 

  • Schlüter U., Crawford R.M.M. 2001. Long-term anoxia tolerance in leaves of Acorus calamus L. and Iris pseudacorus L. J. Exp. Bot. 52: 2213–2225.

    PubMed  Google Scholar 

  • lesak I., Miszalski Z. 2003. Superoxide dismutase-like protein from roots of the intermediate C3-CAM plant Mesembryanthemum crystallinum L. in in vitro culture. Plant Sci. 164: 497–505.

    Article  Google Scholar 

  • Ushimaru T., Ogawa K., Ishida N., Shibasaka M., Kanematsu S., Asada K., Tsuji H. 1995. Changes in organelle superoxide dismutase isoenzymes during air adaptation of submerged rice seedlings: differential behaviour of isoenzymes in plastids and mitochondria. Planta 196: 606–613.

    Article  CAS  Google Scholar 

  • Ushimaru T., Kanematsu S., Shibasaka M., Tsuji H. 1999. Effect of hypoxia on the antioxidative enzymes in aerobically grown rice (Oryza sativa) seedlings. Physiol. Plant. 107: 181–187.

    Article  CAS  Google Scholar 

  • Ushimaru T., Kanematsu S., Katayama M., Tsuji H. 2001. Antioxidative enzymes in seedlings of Nelumbo nucifera germinated under water. Physiol. Plant. 112: 39–46.

    Article  PubMed  CAS  Google Scholar 

  • Willekens H., Inzé D., Van Montagu M., Van Camp W. 1995. Catalases in plants. Mol. Breed. 1: 207–228.

    Article  CAS  Google Scholar 

  • Yamahara T., Shiono T., Suzuki T., Tanaka K., Takio S., Sato K., Yamazaki S., Satoh T. 1999. Isolation of a germin-like protein with manganese superoxide dismutase activity from cells of a moss, Barbula unguiculata. J. Biol. Chem. 274: 33274–33278.

    Article  PubMed  CAS  Google Scholar 

  • Yordanova R.Y., Alexieva V.S., Popova L.P. 2003. Influence of root oxygen deficiency on photosynthesis and antioxidant status in barley plants. Rus. J. Plant Physiol. 50: 163–167.

    Article  CAS  Google Scholar 

  • Vartapetian B.B., Jackson M.B. 1997. Plant adaptations to anaerobic stress. Ann. Bot. 79: 3–20.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rzepka, A., Krupa, J. & lesak, I. Effect of hypoxia on photosynthetic activity and antioxidative response in gametophores of Mnium undulatum . Acta Physiol Plant 27, 205–212 (2005). https://doi.org/10.1007/s11738-005-0024-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-005-0024-4

Key words

Navigation