Skip to main content
Log in

Optical properties and the content of photosynthetic pigments in the stems and leaves of the apple-tree

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Optical properties and changes in the content of photosynthetic pigments (chlorophyll and total carotenoids) were investigated in the bark and leaves of the apple-tree during a year.

Optical properties of stems change with their age. Light reflectance of current year stems equalled 14.2%, while the one for 3-year-old stems decreased to 10.2%, absorption for the current year stems equalled 55.5% and increased up to 66.4% for 3-year-old ones. Light transmittance for the cork of current year stems equalled 30.2%, and decreased with the age of stems reaching 23.4% for the 3-year-old ones. The cork transmitted less than 5% of light of 400 nm, but the transmittance increased with the increase in the wavelength up to 55% at 700 nm. The reflectance of light by the leaf equalled 6.9%, absorption 89.7%, and transmittance 3.4%.

In August the highest amount of chlorophyll pigments (6.2 mg·dm−2) and carotenoids (1.63 mg·dm−2) was detected in the leaves of the apple-tree, however, the ratio of chl a/b reached the highest value 4.12 in June.

For the bark of apple-tree stems the content of chlorophyll pigments increased since spring and reached the maximum content of about 2.8 mg(chl)·dm−2 for 1-3-year-old stems in the summer months, while for the current year stems in October. The ratio chl a/b was at the same level, about 2.2 during the whole year. The content of carotenoids was lower in stems than in leaves and was at the similar level during the year, however, it increased with the age of stems.

Minor changes in the optical properties and the content of photosynthetic pigments occurring with the age of stems may be due to the low increment in cork thickness in the studied age groups of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barr M.L., Potter L.D. 1974. Chlorophyll and carotenoids in aspen bark (Populus tremuloides). The Southwestern Natur. 19: 147–154.

    Article  Google Scholar 

  • Bergweiler P., Lutz C. 1988. Altitude dependent variation of leaf pigments in alpine and lowland plant. Environ. Exp. Bot. 28: 188–192.

    Google Scholar 

  • Brandt A.B., Tageeva S.V. 1967. Optical parameters of plant organisms. Nauka, Moskwa

    Google Scholar 

  • Czarnowski M. 1994. Wła ciwo ci optyczne li ci drzew i krzewów. Wiadomo ci Botaniczne 38: 47–55.

    Google Scholar 

  • Czarnowski M., Cebula S. 1994a. Solar spectral irradiance in cultivated plants under cover in a submontane region. I. Cucumber plants in the greenhouse. Folia Hortic. VI/2: 3–14.

    Google Scholar 

  • Czarnowski M., Cebula S. 1994b. Solar spectral irradiance in cultivated plants under cover in a submontane region. II. Tomato plants in the greenhouse. Folia Hortic. VI/2: 15–23.

    Google Scholar 

  • Czarnowski M., Cebula S. 1994c. Solar spectral irradiance in cultivated plants under cover in a submontane region. III. Sweet pepper plants in the greenhouse. Folia Hortic. VI/2: 25–35.

    Google Scholar 

  • Ewers F. W., Fisher J. B., Fichtner K. 1991. Water flux and Xylem structure in vines. In: Putz FE, Mooney HA (eds) The Biology of Vines, Cambridge University, Cambridge, pp 127–160.

    Google Scholar 

  • Gates D, Keegan H, J., Schleter J. C. 1965. Spectral properties of plants. Applied Optics 4: 11–20.

    Google Scholar 

  • Gausman H W., Allen W. A.,1973. Optical parameters of leaves of 30 plant species. Plant Physiol. 52: 57–62.

    Article  PubMed  Google Scholar 

  • Givnish T. 1995. Plants stems: biomechanical adaptation for energy capture and influence on species distribution. Gartner BL (ed.) Plant Stems: Physiology and Functional Morphology. Academic press, San Diego 3–49.

    Google Scholar 

  • Gundersen K. 1954. Chlorophyll in young shoots of European Beech (Fagus silvatica) in winter. Nature 174: 87–89.

    Article  CAS  Google Scholar 

  • Kharouk V. I., Middleton E. M., Spencer S. L., Rock B. N., Williams D. L. 1995. Aspen bark photosynthetsis and its significance to remote sensing and carbon budget estimates in the boreal ecosystem. Water, Air and Soil Pollut. 82: 483–497.

    Article  CAS  Google Scholar 

  • Kharouk V. I., Terskov I. A. 1982. Pigments in tree tissues. Nauka Russia.

  • Kriedeman P. E., Butrose M. S. 1971. Chlorophyll content and photosynthetic activity within woody shoots of Vitis Vinifera (L.). Photosynthetica 5: 22–27.

    Google Scholar 

  • Larcher W., Lutz C., Nagelle M., Bodner M. 1988. Photosynthetic functioning and ultrastructure of chloroplasts in stem tissue of Fagussylvatica. J. Plant Physiol. 132: 731–737.

    CAS  Google Scholar 

  • Meyer S. 1990. untersuchungen zum chlorophyllgehalt der buchensprossachse. Thesis, University of Göttingen, Germany.

    Google Scholar 

  • Pearson L. C., Lawrence D. B. 1958. Photosynthesis in aspen bark during winter months. Proc. Min. Acad. Sci. 26: 101–107.

    Google Scholar 

  • Pfanz H., Aschan G. 2000. The existence of bark and stem photosynthesis in woody plants and ist significance for the overoll carbon gain. An eco-physiological and ecological approach. Progress in botany 62: 477–510.

    Google Scholar 

  • Pfanz H., Ashan G., Langenfeld-Heyser R., Witmann C., Loose M. 2002. Ecology and ecophysiology of tree stems: corticular and wood photosynthesis. Naturwissenschaften 89: 147–162.

    Article  PubMed  CAS  Google Scholar 

  • Pilarski J. 1984. Content of chlorophyllous pigments in shoot bark and leaves in Syringa vulgaris L. Bul. Pol. Acad. Sci. Biol. Sci. 32: 415–423.

    CAS  Google Scholar 

  • Pilarski J. 1989. Optical properties of bark and leaves in Syringa vulgaris L. Bul. Pol. Acad. Sci. Biol. Sci. 37: 253–261.

    Google Scholar 

  • Pilarski J. 1999. Gradient of photosynthetic pigments in bark and leaves of lilac (Syringa vulgaris L.). Bul. Pol. Acad. Sci. Biol. Sci. 4: 365–373.

    Google Scholar 

  • Pilarski J. 2000. Photosynthetic activity of stems and leaves of appl, sweet cherry, and plum trees. Folia Horticulturae 12/1: 41–44.

    Google Scholar 

  • Schmidt J., Batic F., Pfanz H. 2000. photosynthetic performance of leaves and twigs of everygreen holly (Ilex aquifolium L.). Phyton 40: 179–190.

    Google Scholar 

  • Schultz H. R., Matthews M. A. 1993. Xylem development and hydraulic conductance in sun and shade shotts of grapevine. (Vitis vinifera L.) — evidence that low light uncouples water transport from leaf area. Planta 190: 393–406.

    Article  Google Scholar 

  • Shulgin I. A. 1967. Solar radiation and plant. Gidrometeoizdat, Leningrad.

    Google Scholar 

  • Shulgin I. A. 1973. The plant and sun. Gidrometeoizdat, Leningrad.

    Google Scholar 

  • Sieferman-Harms D 1987. The light-harvesting and protective function of carotenois in photosynthetic membrans. Physiol. Plant. 69: 561–568.

    Google Scholar 

  • Solhaug D. G., Gauslaa Y., Haugen J. 1995. Adverse effects of epiphytic crustose lichens upon stem photosynthesis and chlorophyll of Populus tremula L. Bot Acta 108: 233–239.

    CAS  Google Scholar 

  • Szujkó-Lacza J., Fekete G. 1970. Contribution to the conditions of photosynthesis activity of lignifying shoot axes. Acta Bot. Acad. Sci. Hung. 16: 393–404.

    Google Scholar 

  • Szujkó-Lacza J., Rakovan J. N., Horvath G., Fekete G., Faludi-Daniel A. 1971. Anatomical, ultrastructural and physiological studies on one-year old Euonymus europaeus bark displaying photosynthetic activity. Acta Agron. Acad. Scien. Hungar. 20: 247–260.

    Google Scholar 

  • Szujkó-Lacza J., Rakovan J. N., Fekete G., Horvath G. 1972. Anatomical ultrastructural and physiological studies on primary cortex of old Euonymus europaeu L. displaying photosynthetic activity II. Acta Agron. Acad. Scien. Hungar. 21: 41–56.

    Google Scholar 

  • Wellburn A.R. 1994. The spectral determination of chlorophyll a and b as wall as total carotenoids using various solvents with spectrophotometers of different resolution. J. Plan Physiol. 144: 307–313.

    CAS  Google Scholar 

  • Witmann C., Aschan G., Pfanz H. 2001. Leaf and twig photosynthesis of young beech (Fagus silvatica) and aspen (Populus tremula) trees grown under different light regimens. Basic Appl Ecol 2: 145–154.

    Article  Google Scholar 

  • Yamamoto H. Y. 1979. Biochemistry of the violaxanthin cycle in higher plants. Pure and Appl. Chem. 51: 339–348.

    Google Scholar 

  • Young A.J., Phillip D., Savill J. Carotenoids in higher plant photosynthesis. M. Pessarakli (red.) Handbook of photosynthesis. Marcel Dekker, Inc. New York, Base Hong Kong, 575–596.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tokarz, K., Pilarski, J. Optical properties and the content of photosynthetic pigments in the stems and leaves of the apple-tree. Acta Physiol Plant 27, 183–191 (2005). https://doi.org/10.1007/s11738-005-0022-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-005-0022-6

Key words

Navigation