Skip to main content
Log in

Two-dimensional leaf isozyme patterns of Aegilops kotschyi ’ Secale cereale amphiploids

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Esterase, peroxidase, shikimic dehydrogenase, malic dehydrogenase and diaphorase isozymes in leaves of the amphiploids Aegilops kotschyi × Secale cereale and their parental forms (Ae. kotschyi and S. cereale) were analyzed using two-dimensional gel electrophoresis in non-denaturing conditions. In the amphiploid isozymess were detected, which were not detected in leaves of parental plants. In contrast, some parental isozymes were not detected in refer to the gels of the amphiploids. Detection of new isoforms in the amphiploids and no detection of some parental isoforms is discussed considering the recombination, gene suppression, acting of inhibitors, chromosome translocation and also refer to the previous results of the electrophoretic analysis of proteins and enzymes of Aegilops sp. × S. cereale amphiploids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EST:

esterase

PX:

peroxidase

SKDH:

shikimic dehydrogenase

MDH:

malic dehydrogenase

DIA:

diaphorase

References

  • Ainsworth C.C., Gale M.D., Baird S. 1984. The genetic control of grain esterases in hexaploid wheat. 1. Allelic variation. Theor. Appl. Genet. 68: 219–226.

    Article  CAS  Google Scholar 

  • Ainsworth C.C., Miller T.E., Gale M.D. 1986. The genetic control of grain esterases in hexaploid wheat. 2. Homeologous loci in related species. Theor. Appl. Genet. 72: 219–255.

    Article  CAS  Google Scholar 

  • Apolinarska B. 1996. Transfer of chromosomes of the A and B genomes of wheat to tetrapoloid rye. J. Appl. Genet. 37: 345–356.

    Google Scholar 

  • Bahrman N., Cardin M-L., Seguin M., Zivy M., Thiellement H. 1998. Variability of three cytoplasmatically encoded proteins in the Triticum genus. Heredity 60: 87–90.

    Google Scholar 

  • Colas des Francs C., Thiellement H. 1985. Chromosomal localization of structural genes and regulators in wheat by 2D electrophoresis of ditelosomic lines. Theor. Appl. Genet. 71: 31–38

    Article  CAS  Google Scholar 

  • Chojecki A.J.S., Gale M.D. 1982. Genetic control of glucose phosphate isomerase in wheat and related species. Heredity 49: 337–347.

    CAS  Google Scholar 

  • Cubadda R.A., Bozzini A., Quattrucci E. 1975. Genetic control of esterases in common wheat. Theor. Appl. Genet. 45: 290–293.

    Article  CAS  Google Scholar 

  • Figueiras A.M., Gonzales-Jean M.T., Slinas, J., Benito C. 1984. Association of isozymes with a reciprocal translocation in cultivated rye (Secale cereale). Genetics 109: 177–193.

    Google Scholar 

  • Galili G., Feldman M. 1984. Intergenomic suppression of endosperm protein genes in common wheat. Can. J. Genet. Cytol. 26: 651–656.

    CAS  Google Scholar 

  • Golding G.B., Strobeck C. 1983. Increased number of alleles found in hybrid populations due to intragenic recombination. Evolution 37: 17–29.

    Article  Google Scholar 

  • Jaaska V. 1976. Aspartate aminotransferase izoenzymes in the polyploid wheats and their diploid relatives. On the origin of tetraploid wheats. Bioch. Physiol. Pflanzen. 170: 159–161.

    CAS  Google Scholar 

  • Jaaska V. 1980. Electrophoretic survey of seedling esterases in wheats in relation to their progeny. Theor. Appl. Genet. 56: 273–284.

    Article  CAS  Google Scholar 

  • Jaaska, V. 1983. Secale and Triticale. In: Isozymes in plant genetics and breeding. Part B, ed. by S.D. Tanskley and T.J. Orton, Elsevier Science Publisher: 79–101.

  • Kalinowski A., Radłowski M., Bartkowiak S. 2002. Maize pollen enzymes after two-dimensional polyacrylamide gel electrophoresis in the presence or absence sodium dodecyl sulfate. Electrophoresis 23: 138–143.

    Article  PubMed  CAS  Google Scholar 

  • Kalinowski A., Winiarczyk K., Wojciechowska B. 2001. Pollen proteins after two-dimensional gel electrophoresis and pollen morphology of the Aegilops kotschyi and Ae. variabilis with Secale cereale. Sex. Plant Reprod. 14: 153–161.

    Article  CAS  Google Scholar 

  • Kalinowski A., Wojciechowska B. 2003. Pollen and leaf proteins after 2-D electrophoresis of the Aegilops geniculata × Secale cereale hybrids, amphiploids and parental forms. Euphytica 133: 204–207.

    Article  Google Scholar 

  • Kalinowski A., Wojciechowska B., Borzyszkowska E. 2003. Isozymes in Aegilops kotschyi and Aegilops biuncialis × Secale cereale hybrids and Ae. kotschyi × S. cereale amphiploids in relation to their parents. J. Appl. Genet. 44: 35–43.

    PubMed  Google Scholar 

  • Kawahara T., Nevo E., Yamada T., Zohary D. 1996. III. Genetic stock. Collection of wild Aegilops species in Israel. Wheat Information Service 82: 36–45.

    Google Scholar 

  • Kimber G., Sallee P.J., Feiner M.M. 1988. The interspecific and evolutionary relationships of Triticum ovatum. Genome 30: 218–221.

    Article  Google Scholar 

  • Kimber G., Yean Y. 1989. Hybrids involving wheat relatives and autotetraploid Triticum umbellulatum. Genome 32: 1–5.

    Google Scholar 

  • Liu C.J., Gale M.D. 1989. Evidence for the genetic control of hexokinase isozymes by homeologous group 3 chromosomes in wheat. Cereal Res. Commun. 17: 101–104.

    CAS  Google Scholar 

  • Lukaszewski A.J., Gustafson J.P. 1983. Translocations and modifications of chromosomes in Triticale × wheat hybrids. Theor. Appl.Genet. 64: 239–248.

    Article  Google Scholar 

  • Marais G.F., Marais A.S. 1994. The derivation of compensating tranlocations involving homoeologous group 3 chromosomes of whet and rye. Euphytica 79: 75–80.

    Article  Google Scholar 

  • Morgan K., Strobeck C. 1979. Is intragenic recombination a factor in the maintenance of genetic variation in natural populations? Nature 277: 383–384.

    Article  PubMed  CAS  Google Scholar 

  • Mulcahy D.L., Robinson R.W., Ihara M., Kesseli R. 1981. Gametophytic transciption for acid phosphatases in pollen of Cucurbita species hybrids. J. Hered. 72: 353–354.

    CAS  Google Scholar 

  • Ozkan H., Levy A.A., Feldman M. 2001. Allopolyploidy-induced rapid genome evolution in wheat (Aegilops-Triticum) group. Plant Cell 13: 1735–1747.

    Article  PubMed  CAS  Google Scholar 

  • Sako N., Stahman W.A. 1972. Multiple molecular form of enzymes in barley leaves infected with Erisiphe graminis f. sp. hordei. Physiol. Plant Pathol. 2: 217–226.

    Article  CAS  Google Scholar 

  • Shaked H., Kashkush K., Ozkan H., Feldman M., Levy A.A. 2001. Sequence elimination and cytosine methylation are rapid and reproductible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell 13: 1749–1759.

    Article  PubMed  CAS  Google Scholar 

  • Sneath P.H.A., Socal R.R. 1973. Numerical taxonomy. ed. by W.H. Freeman and Company, San Francisco: 129–136.

  • Strobeck C., Morgan K. 1978. The effect of intragenic recombination on the number of alleles in a finite population. Genetics 88: 829–844.

    PubMed  Google Scholar 

  • Thiellement H., Bahrman M., Colas des Francs C. 1986. Regulatory effects of homeologous chromosome arms on wheat proteins of two developmental stages. Theor. Appl. Genet. 73: 246–251.

    Article  CAS  Google Scholar 

  • Thiellement H., Bahrman M., Damerval C., Plomion C., Rossignol M., Santoni V., De Vienne D., Zivy M. 1999. Proteomics for genetic and physiological studies in plants. Electrophoresis 20: 2013–2026.

    Article  PubMed  CAS  Google Scholar 

  • Tonelli C. 1990. Somaclonal variation in cereals. In: Biotechnology in agriculture and forestry, ed by Bajaj Y.P.S. 11: 271–375.

    Google Scholar 

  • Vladova R., Sabeva Z. 1986. Use of esterases isozymes as chromosomes markers in the study of tetraploid triticale forms. Cereal Res. Commun. 14: 177–184.

    CAS  Google Scholar 

  • Vodenitcharowa M.S. 1989. Isozyme variation in ploidy distinguishable species of subtribe Triticinae. Cereal Res. Commun. 17: 11–15.

    Google Scholar 

  • Wojciechowska B., Pudelska H. 2002. Production and morphology of the hybrids Aegilops kotschyi × Secale cereale and Ae. biuncialis × S. cereale. J. Appl. Genet. 43: 279–285.

    PubMed  Google Scholar 

  • Wolko B., Kruszka, K., Wojciechowska B. 1997. The application of isozyme markers for intergeneric hybrids identification of cereals. EUCARPIA - Section Cereals Meeting. September 1997, Tulln, Austria: 45.

  • Zannis V.I. Breslow J.L. 1981. Human very low density lipoprotein apolipoprotein E isoprotein polymorphism in explained by genetic variation of posttranslational modification. J. Am. Chem. Soc. 20: 1033–1041.

    CAS  Google Scholar 

  • Yean Y., Kimber G. 1990. Reinvestigation of the S genome in Triticum kotschyi. Genome 33: 521–524.

    Google Scholar 

  • Zivy M., Devaux P., Blaisonneau J., Jean J., Thiellement H. 1992. Segregation distortion and linkage studies in microspore-derived double haploid lines of Hordeum vulgare L. Theor. Appl. Genet. 83: 919–924.

    Article  Google Scholar 

  • Zwierzykowski Z., Tayyar R., Brunell M., Lukaszewski A.J. 1998. Genome recombination in intergeneric hybrids between tetraploid Festuca pratensis and Lolium multiflorum. J. Hered. 89: 324–328.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalinowski, A., Wojciechowska, B. Two-dimensional leaf isozyme patterns of Aegilops kotschyi ’ Secale cereale amphiploids. Acta Physiol Plant 26, 75–84 (2004). https://doi.org/10.1007/s11738-004-0047-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-004-0047-2

Key words

Navigation