Skip to main content
Log in

Relationships between ACC synthase isozymes calculated using phenetic data. The catalytical and evolutionary aspects

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The study was undertaken as an attempt at explaining interrelations between the presently found much diversified isoforms of ACC synthase, a key enzyme of the ethylene synthesis pathway in higher plants. The results of our study analysed on a background of current knowledge implied some not yet discussed, physiological and evolutionary aspects of the plant ACS isozymes.

The computer methods applied are based on analysis of phenetic data. The subjects of the study were 159 synthases from higher plants and the only one known from the fungus Penicillium citrinum. The phenograms of 95 full-length sequence ACC synthases from higher plants and the synthase from Penicillium citrinum were made for cDNA and polypeptides by the two different techniques: UPGMA and Kitsch’s method and were almost identical. They indicate the presence of three significantly different types of ACS plant isozymes denoted as type A, type B and A3 group. A number of arguments are given showing that the synthases denoted as A1 and A2 group, hitherto treated by many authors as separate evolutionary lineages, are of the same type A. The presence of a new poorly recognised and probably evolutionary separate group of synthases, denoted as A3, is for the first time evidenced. The type B isozymes are shown to comprise two distinct groups B1 and B2, and B1 group can be divided into subgroups. A comparison of the proportion of genes encoding different type synthases in taxa distinguished by molecular systematicians has shown that similar sets and numbers of genes of type A and A3 group synthases are conserved in the genomes of eudicots and noneudicots. In the genomes of noneudicots the genes of B1 (B1a and B1b) group synthaseswere not found. The genes of B1(B1a and B1b) group in full diversity were established to occur in Rosidae and as B1a subgroup in Asteridae, the subclasses representing eudicots.

It is evidenced that the C-terminal region of the enzyme, hitherto treated as highly variable, and the last aa residue are conserved within the B type and A1 synthases. The acidic character of the polypeptides and the lack of conservation of the last aa residue in the synthases of A2 group are explained by the loss of the 3′-terminal fragment by some A type genes.

The C-terminal region of B type and A1 group synthases was found to contain a fragment similar to the so-called MAPK-docking domain, which suggests that these isozymes are controlled by the processes of phosphorylation.

The aa residues forming the catalytically important three-dimensional structure called the hydrophobic pocket for the adenine ring of SAM can differ slightly in the particular type or groups of ACS. Moreover, A3 group differs from the other synthase groups by the aa residues required for correct orientation of PLP in the active site. Probably, particular ACS groups can differ in the kinetic features and the half-life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

aa:

amino acid

ACC:

1-aminocyclopropane-1-carboxylic acid

ACO:

1-aminocyclopropane-1-carboxylate oxidase

ACS:

1-aminocyclopropane-1-carboxylate synthase

MACC:

1-(malonylamino) cyclopropane-1-carboxylic acid

MAPK:

mitogen-activated protein kinase

MAPKK:

MAPK kinase

PLP:

pyridoxal 5′-phosphate

SAM:

S-adenosyl-L-methionine

UPGMA:

unweighted pair group method with arithmetic averages

Ach :

Actinidia chinensis

Acher :

Annona cherimola

AD :

Actinidia deliciosa

Ama :

Antirrhinum majus

AS :

Asparagus officinalis

AT :

Arabidopsis thaliana

Av :

Averrhoa carambola

BJ :

Brassica juncea

BO :

Brassica oleracea

BP :

Betula pendula

CA :

Capsicum annum

Cpap :

Carica papaya

Csi :

Citrus sinensis

CM :

Cucubita maxima

Cme :

Cucumis melo

CP :

Cucurbita pepo

Cs :

Cucumis sativus

Dc :

Dianthus caryophyllus

DCu :

Dendrobium crumenatum

DK :

Diospyros kaki

Ds :

Doritaneopsis

Fs :

Fagus sylvatica

GM :

Glycine max

LA :

Lupinus albus

LE :

Lycopersicon esculentum

Ls :

Lactuca sativa

MA :

Musa acuminata

Md :

Malus domestica

Mi :

Mangifera indica

Mtru :

Medicago truncatula

NG :

Nicotiana glutinosa

NT :

Nicotiana tabacum

OS :

Oryza sativa

PA :

Persea americana

PC :

Pyrus communis

Pci :

Penicillium citrinum

PE :

Passiflora edulis

PH :

Petunia hybrida

Ph :

Phalenopsis sp.

Phort :

Pelargonium hortorum

Ped :

Phyllostachys edulis

Pmu :

Prunus mume

PP :

Prunus persica

PPa :

Prunus armeniaca

pPP :

Pyrus pyrifolia

POP :

Populus euroamericana

POPe :

Populus euphratica

PS :

Pisum sativum

Pvu :

Phaseolus vulgaris

RP :

Rumex palustris

Sa :

Sinapis arvensis

SH :

Striga hermontica

Sm :

Solanum melongena

SL :

Stellaria longipes

ST :

Solanum tuberosum

TA :

Triticum aestivum

VR :

Vigna radiata

References

  • Asai T., Tena G., Plotnikova J., Willmann M.R., Chiu W.L., Gomez-Gomez L., Boller T., Ausubel F.M., Sheen J. 2002. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature, 415: 977–983.

    Article  PubMed  CAS  Google Scholar 

  • Capitani G., Hohenester E., Feng L., Storici P., Kirsch J.F., Jansonius J.N. 1999. Structure of 1-aminocyclopropane-1-carboxylate synthase, a key enzyme in the biosynthesis of the plant hormone ethylene. J. Mol. Biol., 294: 745–756.

    Article  PubMed  CAS  Google Scholar 

  • Destefano-Beltran L.J.C., Caeneghem W.V., Gielen J., Richard L., Van Montagu M., Van Der Straeten D. 1995. Characterization of three members of the ACC synthase gene family in Solanum tuberosum. Mol. Gen. Genet., 246: 496–508.

    Article  PubMed  CAS  Google Scholar 

  • Dong JG., Kim WT., Yip WK., Thompson GA., Li L., Bennett AB., Yang SF. 1991. Cloning of a cDNA encoding 1-aminocyclopropane-1-carboxylate synthase and expression of its mRNA in ripening apple fruit. Planta, 185: 38–45.

    Article  CAS  Google Scholar 

  • Eliot AC., Kirsch JF. 2002. Modulation of the internal aldimine pK(a)’s of 1-aminocyclopropane-1-carboxylate synthase and aspartate aminotransferase by specific active site residues. Biochemistry, 41: 3836–3842.

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J. 1995 and 2001. PHYLIP (Phylogeny Interference package) v.3.57c and v.3.6a2. University of the Washington.

  • Feng L., Geck M.K., Eliot A.C., Kirsch J.F. 2000. Aminotransferase activity and bioinformatic analysis of 1-aminocyclopropane-1-carboxylate synthase. Biochemistry, 39: 15242–15249.

    Article  PubMed  CAS  Google Scholar 

  • Galanis A., Yang S.H., Sharrocks A.D. 2001. Selective targeting of MAPKs to the ETS domain transcription factor SAP-1. J. Biol. Chem., 12: 965–973.

    Article  Google Scholar 

  • Huai Q., Xia Y., Chen Y., Callahan B., Li N., Ke H. 2001. Crystal Structures of 1-aminocyclopropane-1-carboxylate (ACC) synthase in complex with aminoethoxyvinylglycine and pyridoxal-5′-phosphate provide new insight into catalytic mechanisms. J. Biol. Chem., 276: 38210–38216.

    Article  PubMed  CAS  Google Scholar 

  • Jackson B., Summers J.E., Voesenek L.A.C.J. 1997. Potamogeton pectinatus: a vascular plant that makes no ethylene. Biology and Biotechnology of the Plant Hormone Ethylene. 1997 Kluwer Academic Publishers. NATO ASI Series. Edited by Kanellis A.K., Chang C., Kende H. and Grierson D.

  • Jansonius J.N. 1998. Structure, evolution and action of vitamin B6-dependent enzymes. Current Opinion in Structural Biology, 8: 759–769.

    Article  PubMed  CAS  Google Scholar 

  • Jia Y-J., Kakuta Y., Sugawara M., Igarashi T., Oki N., Kisaki M., Shoji T., Kanetuna Y., Horita T., Matsui H., Honma M. 1999. Synthesis and degradation of 1-aminocyclopropane-1-carboxylic acid by Penicillium citrinum. Biosci. Biotech. Biochem., 63: 542–549.

    Article  CAS  Google Scholar 

  • Jonak C., Okresz L., Bogre L., Hirt H. 2002. Complexity cross talk and integration of plant MAP kinase signalling. Current Opinion in Plant Biology, 5: 415–424.

    Article  PubMed  CAS  Google Scholar 

  • Kakuta Y., Igarashi T., Murakami T., Ito H., Matsui H., Matsui H., Honma M. 2001. 1-Aminocyclopropane-1-carboxylate synthase of Penicillium primary structure and expression in Escherichia coli and S. cerevisiae. Biosci Biotech. Biochem., 65: 1511–1518.

    Article  CAS  Google Scholar 

  • Kende H. 1993. Ethylene biosynthesis. Ann. Rev. Plant Physiol. Plant Mol. Biol., 44: 283–307.

    Article  CAS  Google Scholar 

  • Klintborg A., Eklund L., Little C.H.A. 2002. Ethylene metabolism in Scots pine (Pinus silvestris) shoots during the year. Tree Physiology, 22: 59–66.

    PubMed  CAS  Google Scholar 

  • Koch K.A., Capitani G., Gruetter M.G., Kirsch J.F. 2001. The human cDNA for a homologue of the plant enzyme 1-aminocyclopropane-1-carboxylate synthase encodes a protein activity. Gene, 272: 75–84.

    Article  PubMed  CAS  Google Scholar 

  • Li N., Mattoo A. 1994. Deletion of the carboxyl-terminal region of 1-aminocyclopropane-1-carboxylic acid synthase, a key protein in the biosynthesis of ethylene, results in catalitically hyperactive, monomeric enzyme. J. Biol. Chem., 269: 6908–6917.

    PubMed  CAS  Google Scholar 

  • Li Y., Feng L., Kirsch JF. 1997. Kinetic and spectroscopic investigations of wild-type and mutant forms of apple 1-aminocyclopropane-1-carboxylate synthase. Biochemistry, 36: 15477–15480.

    Article  PubMed  CAS  Google Scholar 

  • Liang X., Abel S., Keller J.A., Shen N.F., Theologis A. 1992. The 1-aminocyclopropane-1-carboxylate synthase gene family of Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA, 89: 11046–11050.

    Article  PubMed  CAS  Google Scholar 

  • Lincoln J.E., Campbell A.D., Oetiker J., Rottmann W.H., Oeller P.W., Shen N.F., Theologis A. 1993. LE-ACS4, a fruit ripening and woud-induced 1-aminocyclopropanne-1-carboxylate synthase gene of tomato (Lycopersicon esculentum). J. Biol. Chem., 268: 19422–19430.

    PubMed  CAS  Google Scholar 

  • McCarthy DL., Capitani G., Feng L., Gruetter MG., Kirsch JF. (2001) Glutamate 47 in 1-aminocyclopropane-1-carboxylate synthase is a major specifity determinant. Biochemistry, 40: 12276–12284.

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka D., Nanmori T., Sato K., Fukami Y., Kikkawa U., Yasuda T. 2002. Activation of AtMEK1, an Arabidopsis mitogen-activated protein kinase kinase, in vitro and in vivo: analysis of active mutants expressed in E.coli and generation of the active form in stress response in seedlings. Plant J., 29: 637–647.

    Article  PubMed  CAS  Google Scholar 

  • Mattoo A.K., Baker J.E., and Moline H.E. 1985. Induction by copper ions of ethylene production in Spirodela oligorrhiza: evidence for a pathway independent of 1-aminocyclopropane-1-carboxylic acid. J. Plant Physiol., 123: 193–202.

    Google Scholar 

  • Osborne D.J., Walters J., Milborrow B.V., Norville A., Stange L.M.C. 1996. Evidence for a non-ACC-dependent ethylene biosynthesis pathway in lower plants. Phytochemistry, 42: 51–60.

    Article  CAS  Google Scholar 

  • Page R.D.M. 1996. TreeView: An application to display phylogenetic trees on personal computers. Computer Applications in the Biological Sciences 12: 357–358.

    CAS  Google Scholar 

  • Peixoto B.R., Mikawa Y., Brenner S. 2001. Characterization of the recombinase activating gene-1 and 2 locus in the Japanese pufferfish, Fugu rubripes. Gene, 246: 275–283.

    Article  Google Scholar 

  • Ren D., Yang H., Zhang S. 2000. Cell death mediated by MAPKs is associated with hydrogen peroxide production in Arabidopsis. J. Biol. Chem., 277: 559–565.

    Article  CAS  Google Scholar 

  • Rohwer F. and Bopp M. 1984. Ethylene Synthesis in Moss Protonema. J. Plant Physiol., 117: 331–338.

    Google Scholar 

  • Satoh S., Esashi Y. 1986. Inactivation of 1-aminocyclopropane-1-carboxylic acid synthase of etiolated mung bean hypocotyl segments by its substrate, S-adenosyl-L-methionine. Plant Cell Physiol., 91: 1036–1039.

    Google Scholar 

  • Satoh S., Mori H., Imaseki H. 1993. Monomeric and dimeric forms and the mechanism-based inactivation of 1-aminocyclopropane-1-carboxylate synthase. Plant Cell Physiol., 34: 753–760.

    CAS  Google Scholar 

  • Savolainen V., Chase M.W., Hoot S.B., Morton C.M., Soltis D.E., Bayer C.F., de Bruijn A.Y., Sullivan S., Qiu Y.L. 2000. Phylogenetic of flowering plants based on combined analysis plastid atp B and rbcL gene sequences. Syst. Biol., 49: 306–362.

    Article  PubMed  CAS  Google Scholar 

  • Spanu P., Grosskopf D.G., Felix G., Boller T. 1994. The apparent turnover of 1-aminocyclopropane-1-carboxylate synthase in tomato cells is regulated by protein phosphorylation and dephosphorylation. Plant Physiol., 106: 529–535.

    PubMed  CAS  Google Scholar 

  • Shiu O. Y., Oetiker J.H., Yip W.K., Yang S. F. 1998. The promoter of LE-ACS7, an early flooding-induced 1-aminocyclopropane-1-carboxylate synthase gene of the tomato, is tagged by a Sol3 transposon. Proc. Natl. Acad. Sci USA, 95: 9796–9801.

    Article  Google Scholar 

  • Tarun A.S., Theologis A. 1998. Complementation analysis of mutants of 1-aminocyclopropane-1-carboxylate synthase reveals the enzyme is a dimer with shared active sites. J. Biol. Chem., 273: 12509–12514.

    Article  PubMed  CAS  Google Scholar 

  • Tarun A.S., Lee J.S., Theologis A. 1998. Random mutagenesis of 1-aminocyclopropane-1-carboxylate synthase: a key enzyme in ethylene biosynthesis. Proc. Natl. Acad. Sci. USA, 95: 9796–9801.

    Article  PubMed  CAS  Google Scholar 

  • Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. 1997. The ClustalX windows interface: flexible strategies for multiple sequences alignment aided by quality analysis tools. Nucleic Acids Res., 24: 4876–4882.

    Article  Google Scholar 

  • Tittle F.L. 1987. Auxin-stimulated ethylene production in fern gametophytes and sporophytes. Physiol. Plantarum, 70: 499–502.

    Article  CAS  Google Scholar 

  • Vanden Driessche T., Kevers C., Collet M., Gaspar T. 1988. Acetabularia mediterranea and Ethylene: Production in Relation with Development, Circadian Rhythms in Emission, and Response to External Application. J. Plant Physiol., 133: 635–639.

    Google Scholar 

  • Yang S.F., Hoffman N.E. 1984. Ethylene biosynthesis and its regulation in higher plants. Ann. Rev. Plant Physiol., 35: 155–189.

    CAS  Google Scholar 

  • Zarembinski T. I., Theologis A. 1994. Ethylene biosynthesis and action: case of conservation. Plant Mol. Biol., 26: 1579–1597.

    Article  PubMed  CAS  Google Scholar 

  • Zhou H., Wang HW., Zhu K., Sui SF., Xu P., Yang SF., Li N. 1999. The multiple roles of conserved arginine 286 of 1-aminocyclopropane-1-carboxylate synthase. Coenzyme binding, substrate binding, and beyond. Plant Physiol., 121: 913–919.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakubowicz, M., Pacak, A. Relationships between ACC synthase isozymes calculated using phenetic data. The catalytical and evolutionary aspects. Acta Physiol Plant 26, 5–27 (2004). https://doi.org/10.1007/s11738-004-0040-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-004-0040-9

Key words

Navigation