Skip to main content
Log in

Effect of short-term exposure to NaCl on photochemical activity and antioxidant enzymes in Bruguiera parviflora, a non-secretor mangrove

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Effect of short-term (6 days) exposure to high salinity (500 mM NaCl) was studied in Bruguiera parviflora, a tree mangrove. NaCl treatment decreased photochemical activity, but had no effect on growth. Thylakoid protein profile and spectral characteristic were not changed. There was no significant effect on chlorophylls and carotenoids content, total proteins and total free amino acids. However, there was an increase in free proline. The activity of antioxidant enzymes like catalase, ascorbate peroxidase was enhanced, but no significant change in guaiacol peroxidase was observed. Salinity did not cause any alteration in malondialdehyde formation indicating intactness of membrane integrity upon high salinity. We conclude that the effect of high NaCl stress is not revealed in morphology of the plants, but in the metabolic changes as increase in proline and antioxidant enzyme activity. These effects are the adaptive mechanisms that operates under high salt stress in this mangrove; however, the decrease in photochemical activity may be due to onset of senescence which helps plant in remobilization of photosynthate to new leaves after adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AOS:

Active oxygen species

APX:

ascorbate peroxidase

CAT:

catalase

Chl:

-chlorophyll

DCMU:

3-(3, 4-dichlorophenyl)-1, 1-dimethyl urea)

DCPIP:

2, 6-dichlorophenolindophenol

DMF:

Dimethylformamide

EDTA:

ethylenediaminetetraacetic acid

Hepes:

N-(2-Hydroxyethyl)piperazine-N′-(2-ethanesulph onic acid)

MDA:

malondialdehyde

Mes:

2-(N-Morpholino)ethanesulphonic acid

POX:

non-specific peroxidase

PMSF:

phenylmethylsulphonylfluoride

SDS-PAGE:

Sodium-dodecyl sulphate polyacrylamide gel electrophoresis

PSII:

photosystem II

Tris:

N-tris-(hydroxymethyl)aminomethane

Tricine:

N-[tris-(hydroxymethyl)-methyl]glycine

References

  • Ashihara H., Adachi K., Otawa M., Yasumoto E., Fukushima Y., Kato M., Sano H., Sasamoto H. and Baba S. 1997. Compatible solutes and inorganic ions in the mangrove plant Avicennia marina and their effects on the activities of enzymes. Z. Naturforsch., 52c: 433–440.

    Google Scholar 

  • Ball M.C., Farquhar G.D. 1984. Photosynthetic and stomatal responses of Mangrove species, Aegiceras corniculatum and Avicennia marina to long term salinity and humidity. Plant Physiol., 74: 1–6.

    PubMed  Google Scholar 

  • Ball M.C., Chow W.S. and Anderson J.M. 1987. Salinity-induced potassium deficiency causes loss of functional photosystem II in leaves of the grey mangrove, Avicennia marina, through depletion of the atrazine-binding polypeptide. Aust. J. Plant Physiol., 14: 351–361.

    CAS  Google Scholar 

  • Bates L.S., Waldren R.P., Teare I.D. 1973. Rapid determination of free proline for water-stress studies. Plant & Soil, 39: 205–207.

    Article  CAS  Google Scholar 

  • Beers R. F., Sizer I. 1952. A spectrophotometric method for measuring the hydrogen peroxide by catalase. J. Biol. Chem., 195: 133–140.

    PubMed  CAS  Google Scholar 

  • Bhargava B. S., Raghupathi H. B. 1998. Analysis for plant material for macro and micro nutrients. In: Methods of Analysis of Soils, Plants, Water and Fertilizers, ed. by H. L. S. Tandon, Fertiliser Development and Consultation Organization, 1–2 Panposh Enclave, New Delhi: 49–82.

  • Biswal U. C., Mohanty P. 1976. Dark stress-induced senescence of detached barley leaves. II. Alteration in the absorption characteristics and photochemical activity of the chloroplasts isolated from senescing leaves. Plant Sci. Lett., 7: 371–379.

    Article  CAS  Google Scholar 

  • Bradford M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Cakmak I., Horst W. J. 1991. Effect of alumunium on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tips of soyabean (Glycine max). Physiol. Plant., 83: 463–468.

    Article  CAS  Google Scholar 

  • Damerval C., Vienne P, Zivy M., Thiellement H. 1986. Technical improvement in two-dimensional electrophoresis increase the level of genetic variation detected in wheat seedling proteins. Electrophoresis, 7: 52–54.

    Article  CAS  Google Scholar 

  • Dhindsa R. S., Plumle-Dhindsa P., Thrope T. A. 1981. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. J. Exp. Bot., 32: 93–101.

    Article  CAS  Google Scholar 

  • Garstka M., Kanuiga Z. 1988. Linoleic acid-induced release of Mn, polypeptides and inactivation of oxygen evolution in photosystem particles. FEBS Lett., 232: 372–376.

    Article  CAS  Google Scholar 

  • Gomez J. M., Hernadez J. A., Jimenez A., del Rio L. A. Sevilla F. 1999. Differential response of antioxidative enzymes of chloroplasts and mitochondria to long-term NaCl stress of pea plants. Free Rad. Res., 31: 11–18.

    Article  Google Scholar 

  • Gossett D. R., Banks S. W., Millhollon E. P., Lucas C. 1996. Antioxidant response to NaCl stress in a control and NaCl-tolerant cotton cell line grown in the presence of paraquat, buthionine sulfoximine and exogenous glutathione. Plant Physiol., 112: 803–809.

    PubMed  Google Scholar 

  • Greenway H., Munns R. 1980. Mechanisms of salt-tolerance in non-halophytes. Ann. Rev. Plant Physiol., 31: 149–190.

    Article  CAS  Google Scholar 

  • Gueta-Dahan Y., Yaniv Z., Zilinskas B.A., Ben-Hayyim G. 1997. Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in citrus. Planta, 203: 460–469.

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa P. M., Bressan R. A., Zhu J.-K., Bohnert H. J. 2000. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Molec. Biol., 51: 463–499.

    Article  CAS  Google Scholar 

  • Hernadez J. A., Almansa M. S. 2002. Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiol. Plant., 115: 251–257.

    Article  Google Scholar 

  • Hernadez J. A., Ferrer M. A., Jimenez A., Ros-Barcelo A., Sevilla F. 2001. Antioxidant systems and O2/H2O2 production in the apoplast of Pisum sativum L. leaves: its relation with NaCl-induced necrotic lesions in minor veins. Plant Physiol., 127: 817–831.

    Article  Google Scholar 

  • Heuer B. 1996. Photosynthetic carbon metabolism of crops under salt stress. In: Handbook of Photosynthesis, ed. by Pesserkali M., Marshal Dekar, Baten Rose, USA, pp: 897–909.

    Google Scholar 

  • Hibino T., Meng Y-L, Kawamitsu Y., Uehara N., Matsuda N., Tanalka Y., Hiroshi I., Baba S., Takabe T., Wada K., Ishii T., Takabe T. 2001. Molecular cloning and functional characterization of two kinds of betaine-aldehyde dehydrogenase in betaine-accumulating mangrove Avicennia marina (Forsk.) Vierh.. Plant Molec. Biol. 45: 353–363.

    Article  CAS  Google Scholar 

  • Hoagland D. R., Arnon D. I. 1940. Crop production in artificial solutions and in soil with special reference to factors influencing yields and absorption of inorganic nutrients. Soil Science, 50: 463–471.

    Google Scholar 

  • Hoagrath P. J. 1999. The Biology of Mangroves. Academic Press, London, pp. 14.

    Google Scholar 

  • Izawa S. 1980. Acceptors and donors for electron transport. In: Methods in Enzymology (A San Pietro, ed.) 69: 413–434.

  • Kelley G. H., Latzko E. 1979. Soluble ascorbate peroxidase Naturwissenschaften, 66: 377–382.

    Google Scholar 

  • Laemmli U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Leshem Y. Y. 1992. Plant membrane biophysics in development and senescence. In: Plant Membranes: a Biophysical Approach to Structure, Development and Senescence, ed. by Y. Y. Leshem, Kluwer Academic Publishers, Boston, MA, pp. 111–154.

    Google Scholar 

  • Lowry O. H., Rosebrough N.J., Farr A. L., Randall R. J. 1951. Protein measurement with the Folin Phenol reagent. J. Biol. Chem., 193: 265–275.

    PubMed  CAS  Google Scholar 

  • McMillan C. 1979. Salt tolerance of mangroves and submerged aquatic plants. In: Ecology of Halophyte, Ed. by R. J. Reimold and W. H. Queen, Academic press, London: 379–390.

    Google Scholar 

  • Mishra S.R., Das A.B. 2003. Effect of short-term exposure to NaCl on leaf salt secretion and antioxidative enzyme level in roots of a mangrove, Aegiceras corniculatum. Ind. J. Exp. Biol., 41: 160–166.

    Google Scholar 

  • Moore S., Stein W. H. 1948. Photometric ninhydrin method for use in chromatography of amino acids. J. Bio. Chem., 176: 367–388.

    CAS  Google Scholar 

  • Munns R. 1993. Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant, Cell Environ., 16: 15–24.

    Article  CAS  Google Scholar 

  • Munns R., Termatt A. 1986. Whole plant responses to salinity. Aust. J. Plant Physiol., 13: 143–160.

    Article  Google Scholar 

  • Muranaka S., Shimizu K., Kato M. 2002. Ionic and osmotic effects of salinity on single-leaf photosynthesis in two wheat cultivars with different drought tolerance. Photosynthetica, 40: 201–207.

    Article  CAS  Google Scholar 

  • Nakatani H, Barber J. 1977. An improved method for isolating chloroplasts retaining their outer membranes. Biochim. Biophys. Acta, 461: 510–512.

    Article  CAS  Google Scholar 

  • Ohya T., Morimura Y., Saji H., Mihara T. Ikawa T. 1997. Purification and characterization of ascorbate peroxidase in roots of Japanese radish. Plant Sci. 125: 137–145.

    Article  CAS  Google Scholar 

  • Parida A., Das A. B., Das P. 2002. NaCl stress causes changes in photosynthetic pigments, proteins and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora. J. Plant Biol., 45: 28–36.

    Article  CAS  Google Scholar 

  • Popp M. 1984. Chemical composition of Australian mangroves. II. Low molecular weight carbohydrates. Z. Pflanzenphysiol., 113: 411–421.

    CAS  Google Scholar 

  • Popp M., Larther F., Weigel P. 1985. Osmotic adaptation in Australian mangroves. Vegetatio, 61: 247–254.

    Article  Google Scholar 

  • Porra R. J., Thompson, W. A., Kriendemann P. E. 1989. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophyll a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochem. Biophys. Acta, 975: 384–394.

    Article  CAS  Google Scholar 

  • Savoure A., Thorin D., Davey M., Hua X. J., Mauro S., Van Montagu M., Inze D., Verbruggen N. 1999. NaCl and CuZnSO4 treatments trigger distinct oxidative defence mechanism in Nicotiana plumbaginifolia L.. Plant Cell Environ, 22: 387–396.

    Article  CAS  Google Scholar 

  • Scandalios J.G. 1964. Tissue-specific isozyme variation in maize, J. Hered. 55: 281.

    CAS  Google Scholar 

  • Takemura T., Hanagata N., Sugihara K., Baba S., Karube I., Dubinsky Z. 2000. Physiological and biochemical responses to salt stress in the mangrove, Bruguiera gymnorrhiza. Aquat. Bot, 68: 15–28.

    Article  CAS  Google Scholar 

  • Teas H. J. 1979. Silviculture with saline water. In: The Biosaline Concept, ed. by A. Hollaender, Plenum Press, New York, pp 117–161.

    Google Scholar 

  • Tomlinson P. B. 1986. The Botany of Mangroves. Cambridge University Press, Cambridge.

    Google Scholar 

  • Wetter L., Dyck J. 1983. Isoenzyme analysis of cultured cells and somatic hybrids. In: Handbook of Plant Cell Culture Vol. 1. Techniques for Propagation and Breeding, Ed. by David A. Evans, William R. Sharp, Philip V. Ammirato, Yasuyuki Yamada, MacMillan Publishing Company, New York: 607–627.

    Google Scholar 

  • Willekens H., Inze D., Van Montangu M., Van Camp W. 1995. Catalase in plants. Molecular Breeding, 1: 207–228.

    Article  CAS  Google Scholar 

  • Yeo A. R., K.-S., Izard P., Boursier P. J., Flowers T. J. 1991. Short- and long-term effects of salinity on leaf growth in rice (Oryza sativa). J. Exp. Bot., 42: 881–889.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anath Das Bandhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, S., Das Bandhu, A. Effect of short-term exposure to NaCl on photochemical activity and antioxidant enzymes in Bruguiera parviflora, a non-secretor mangrove. Acta Physiol Plant 26, 317–326 (2004). https://doi.org/10.1007/s11738-004-0022-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-004-0022-y

Key words

Navigation