Skip to main content
Log in

The effects of toxic metals, content of nutrients and inoculation with mycorrhizal fungi on the level of phenolics in roots and growth of Scots pine seedlings

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The effects of two substrates and several strains of mycorrhizal fungi on the content of soluble phenolics in roots and growth of Scots pine seedlings was investigated. The first substrate was fertile and contaminated with copper, zinc and lead, whereas the second one displayed nutrient deficiency. The dry weights of needles, trunks, roots and the total biomass were higher in groups of seedlings inoculated with mycorrhizal fungi on fertile and polluted substrate. Inoculation of pine seedlings on this substrate resulted in a decrease in concentration of phenolics in roots and except for seedlings inoculated with Laccaria laccata negatively influenced the above-ground part: root ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bradley R., Burt A.J., Read D.J. 1982. The biology of mycorrhiza in the Ericaceae. VIII. The role of mycorrhizal infection in heavy metal resistance. New Phytol. 91: 197–210.

    Article  CAS  Google Scholar 

  • Brar M.S., Sekhon G.S. 1976. Interaction of zinc with other micronutrient cations. I Effect of copper on zinc65 absorption by wheat seedlings and its translocation within the plants. Plant and Soil, 45: 137–143.

    Article  CAS  Google Scholar 

  • Bre W., Golcz A., Komosa A., Kozik E., Tyksi ski W. 1997. Nawo enie ro lin ogrodniczych. Wydawnic-two Akademii Rolniczej im. Augusta Cieszkowskiego w Poznaniu, Pozna, Poland, pp. 59–74.

    Google Scholar 

  • Brown M.T., Wilkins D.A. 1985. Zinc tolerance of mycorrhizal Betula. New Phytol. 99: 101–106.

    Article  CAS  Google Scholar 

  • Chappelka A.H., Kush J.S., Runion G.B., Meier S., Kelly W.D. 1991. Effect of soil applied lead on seedling growth and ectomycorrhizal colonization of loblolly pine. Environ. Pollut. 72: 307–316.

    Article  PubMed  CAS  Google Scholar 

  • Clarkson D.T., Luttge U. 1989. III. Minerel nutrition: divalent cations, transport and compartmentation. Progress in Botany, 51: 93–112.

    Google Scholar 

  • Colpaert J., van Assche J. 1993. The effects of cadmium on ectomycorrhizal Pinus sylvestris L. New Phytol. 123: 325–333.

    Article  CAS  Google Scholar 

  • Danielson R.M. 1991. Temporal changes and effects of amendments on the occurrence of sheathing (ecto-) mycorrhizas of conifers growing in oil sands tailings and coal spoil. Agric. Ecosyst. Environ. 35: 261–281.

    Article  Google Scholar 

  • Dixon R.K., Buschena C.A. 1988. Response of ectomycorrhizal Pinus banksiana and Picea glauca to heavy metals in soils. Plant and Soil, 105: 265–271.

    Article  CAS  Google Scholar 

  • Duchesne L.C., Peterson R.L., Ellis B.E. 1987. The accumulation of plant-produced antimicrobial compounds in response to ectomycorrhizal fungi: a review. Phytoprotection, 68: 1–27.

    Google Scholar 

  • Fiusello N., Molinari M.T. 1973. Effects of lead on plant growth. Allonia 19: 89–96.

    Google Scholar 

  • Gadd G.M. 1993. Interactions of fungi with toxic metals. New Phytol. 134: 25–60.

    Article  Google Scholar 

  • Godbold D.L., Jentschke G., Winter S., Marschner P. 1988. Ectomycorrhizas and amelioration of metal stress in forest trees. Chemosphere, 36: 757–762.

    Article  Google Scholar 

  • Greszta J. 1982. The effect of dust from copper and zinc works introduced into soil on the growth of the seedlings of selected tree species. Fragm. Flor. Geobot. 28: 3–28.

    Google Scholar 

  • Grünhage L., Jäger H.J. 1985. Effect of heavy metals on growth and heavy metal content of Allium porrum L. and Pisum sativum L. Angew. Botanik, 59: 11–27.

    Google Scholar 

  • Hartley J., Cairney J.W.G., Meharg A.A. 1997a. Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment. Plant and Soil, 189: 303–319.

    Article  CAS  Google Scholar 

  • Hartley J., Cairney J.W.G. Sanders F.E., Meharg A.A. 1997b. Toxic interactions of metal ions (Cd, Pb, Zn, Sb) on in vitro biomass production of ectomycorrhizal fungi. New Phytol. 137: 551–562.

    Article  CAS  Google Scholar 

  • Hartley J., Cairney J.W.G., Freestone P., Woods C., Meharg A.A. 1999. The effects of multiple metal contamination on ectomycorrhizal Scots pine (Pinus sylvestris) seedlings. Environ. Pollution, 106: 413–424.

    Article  CAS  Google Scholar 

  • Heale E.L., Ormrod D.P. 1982. Effects of nickel and copper on Acer rubrum, Cornus stolonifera, Lonicera tatarica and Pinus resinosa. Can. J. Bot. 60: 2667–2681.

    Google Scholar 

  • Jentschke G., Godbold D.L. 2000. Metal toxicity and ectomycorrhizas. Physiologia Plantarum, 109: 107–116.

    Article  CAS  Google Scholar 

  • Jentschke G., Winter S., Godbold D.L. 1999. Ectomycorrhizas and cadmium toxicity in Norway spruce seedlings. Tree Physiol. 19: 23–30.

    PubMed  CAS  Google Scholar 

  • Jones M.D., Hutchinson T.C. 1986. The effect of mycorrhizal infection on the response of Betula papyrifera to nickel and copper. New Phytol. 102: 429–442.

    Article  CAS  Google Scholar 

  • Jones M.D., Hutchinson T.C. 1988a. Nickel toxicity in mycorrhizal birch seedlings infected with Lactarius rufus or Scleroderma flevidum. I. Effect on growth, phytosynthesis, respiration and transpiration. New Phytol. 108: 451–459.

    Article  CAS  Google Scholar 

  • Jones M.D., Hutchinson T.C. 1988b. Nickel toxicity in mycorrhizal birch seedlings infected with Lactarius rufus or Scleroderma flevidum. II. Uptake of nickel, calcium, potasium, phosphorus and iron. New Phytol. 108: 461–470.

    Article  CAS  Google Scholar 

  • Karolewski P., Giertych M.J. 1994. Influence of aluminium, cadmium, manganese and lead ions on the level of phenols in needles and roots and on root respiration of Scots pine (Pinus sylvestris L.) seedlings grown in laboratory conditions. Acta Soc. Bot. Pol. 63: 29–35.

    CAS  Google Scholar 

  • Kowalski S. 1987. Mycotrophy of trees in converted stands remaining under strong pressure of industrial pollution. Angew. Botanik, 61: 65–83.

    Google Scholar 

  • Kowalski S., Wojewoda W., Bartnik C., Rupik, A. 1989. Mycorrhizal species composition and infection pattern in forest plantations exposed to different levels of industrial pollution. Agric. Ecosyst. Environ. 28: 249–255.

    Article  Google Scholar 

  • Leyval C., Turnau K., Haselwandter K. 1997. Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza, 7: 139–153.

    Article  CAS  Google Scholar 

  • Lo-Buglio K.F., Wilcox H.E. 1988. Growth and survival of ectomycorrhizal seedlings of Pinus resinosa on iron tailings. Can. J. Bot. 66: 55–60.

    Google Scholar 

  • Mc Creight J.D., Schroeder D.B. 1982. Inhibition of growth of nine ectomycorrhizal fungi by cadmium, lead, and nickel in vitro. Environ. Pollution, 13: 265–268.

    Google Scholar 

  • Meharg A.A., Cairney J.W.G. 2000. Ectomycorrhizas — extending the capabilities of rhizosphere remediation. Soil Biol. Biochem., 32: 1475–1484.

    Article  CAS  Google Scholar 

  • Metzler B., Oberwinkler F. 1987. The in vitro-mycorrhization of Pinus sylvestris L. and its dependence on the pH-value. Eur. J. For. Pathol. 17: 385–397.

    Article  Google Scholar 

  • Meyer F.H. 1987. Das Wurzelsystem geschädigter Waldbestände. Allg. Forstz. 27(29): 754–257.

    Google Scholar 

  • Oleksyn J., Karolewski P., Giertych M.J., Werner A., Tjoelker M.G., Reich P.B. 1996. Altered root growth and plant chemistry of Pinus sylvestris seedlings subjected to aluminium in nutrient solution. Trees, 40: 135–144.

    Google Scholar 

  • Olsen R.A., Clark R.B., Bennett J.H. 1981. The enhancement of soil fertility by plant roots. Amer. Scien. 69: 378–384.

    CAS  Google Scholar 

  • Pachlewski R. 1983. Grzyby symbiotyczne i mikoryza sosny (Pinus sylvestris L.). Prace IBL, 165: 1–132.

    Google Scholar 

  • Rachwał L., Sienkiewicz A., Komisarek J. and Kociałkowski W.Z. 1990. Rozmieszczenie na ró nych gł - boko ciach oraz frakcjono wanie Cu, Pb i Zn w glebach strefy ochronnej hut miedzi w Głogowie. Prace Komisji Nauk Rolniczych i Komisji Nauk Le nych, 69: 101–114.

    Google Scholar 

  • Rühling A., Baath E., Nordgren A., Söderstrom B. 1984. Fungi in metal contaminated soil near the Gusum. Brass Mill, Sweden. Ambio, 13: 34–36.

    Google Scholar 

  • Smith W.H. 1987. The atmosphere and the rhizosphere: Linkages with potential significance for forest tree health. In: Technical Bulletin of National Council of the Paper Industry for Air and Stream Improvements, ed by R.O. Blasser. New York, 527: 30–94.

  • Termorshuizen A.J., Van Den Erden L.J., Dueck, T.A. 1989. The effect of SO2 pollution on mycorrhizal and nonmycorrhizal seedlings of Pinus sylvestris. Agric. Ecosyst. Environ. 28: 513–518.

    Article  Google Scholar 

  • Turnau K. 1995. Mechanisms of heavy metal detoxification in ectomycorrhizas. In: Proceedings of the International Colloquium on Bioindication of Forest Site Pollution: Development of Methodology and Training (BIOFOSP) ed. by H. Kraiger F. Batic D.E. Hanke R. Agerer, D. Grill. Slovenian Forestry Institute and Agronomy Department, Biotechnical Faculty, University of Ljubliana, Slowenia, pp. 113–117.

    Google Scholar 

  • Turnau K., Kottke I., Oberwinkler F. 1993. Heavy metal distribution in mycorrhizas from strongly polluted sites. In: Air pollution and interactions between organisms in forest ecosystems, ed. by M. Tesche, S. Feiler. Forstwiss. Cbl., 112: 120.

    Google Scholar 

  • Van Tichelen K.K., Vanstraelen T., Colpaert J.V. 1999. Nutrient uptake by intact mycorrhizal Pinus sylvestris seedlings: diagnostic tool to detect copper toxicity. Tree Physiol. 19: 189–196.

    PubMed  Google Scholar 

  • Werner A. 1996. Proces starzenia si korzeni indukowany ska eniem rodowiska glebowego i jego wpływ na symbioz mikoryzow. In: Reakcje biologiczne drzew na zanieczyszczenia przemysłowe, ed. by R. Siwecki. Sorus, Pozna, Poland, pp. 590–595.

    Google Scholar 

  • Werner A., Chojnacki B. 1994. Wpływ ska enia gleb na wzrost siewek sosny, typ i stopie infekcji mikoryzowej. Arboretum Kórnickie, 39: 179–206.

    Google Scholar 

  • Werner A., Chojnacki, B. 1996. Wady rozwojowe korzeni sosny zwyczajnej uwarunkowane obecno ci metali ci kich i ich wpływ na typ i stopie infekcji mikoryzowej. In: Reakcje biologiczne drzew na zanieczyszczenia przemysłowe, ed. by R. Siwecki. Sorus, Pozna, Poland, pp. 605–610.

    Google Scholar 

  • Wu L., Antonovics J. 1975. Zinc and copper uptake by Agrostis stolonifera, tolerant to both zinc and copper. New Phytol. 75: 231–237.

    Article  CAS  Google Scholar 

  • Zwoli ski J. 1995. Wpływ emisji zakładów metali nieelaznych na rodowisko le ne — rola metali ci kich w degradacji lasów. Prace IBL, Ser. A. 809: 1–86.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werner, A., Karolewski, P. The effects of toxic metals, content of nutrients and inoculation with mycorrhizal fungi on the level of phenolics in roots and growth of Scots pine seedlings. Acta Physiol Plant 26, 177–186 (2004). https://doi.org/10.1007/s11738-004-0007-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-004-0007-x

Key words

Navigation