Skip to main content
Log in

Changes in the activities of carbon metabolizing enzymes with pod development in lentil (Lens culinaris L.)

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Activities of some key enzymes of carbon metabolism sucrose synthase, acid and alkaline invertase, phosphoenol pyruvate carboxylase, malic enzyme and isocitrate dehydrogenase were investigated in relation to the carbohydrate status in lentil pods. Sucrose remained the dominant soluble sugar in the pod wall and seed, with hexoses (glucose and fructose) present at significantly lower levels. Sucrose synthase is the predominant sucrolytic enzyme in the developing seeds of lentil (Lens culinaris L.). Acid invertase was associated with pod elongation and showed little activity in seeds. Sucrose breakdown was dominated by alkaline invertase during the development of podwall, while both the sucrose synthase and alkaline invertase were active in the branch of inflorescence. A substantial increase of sucrolytic enzymes was observed at the time of maximum seed filling stage (10–20 DAF) in lentil seed. The pattern of activity of sucrose synthase highly paralleled the phase of rapid seed filling and therefore, can be correlated with seed sink strength. It seems likely that the fruiting structures of lentil utilize phosphoenol pyruvate carboxylase for recapturing respired carbon dioxide. Higher activities of isocitrate dehydrogenase and malic enzyme in the seed at the time of rapid seed filling could be effectively linked to the deposition of protein reserves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DAF:

days after flowering

SS:

sucrose synthase

SPS:

sucrose phosphate synthase

PEP:

phosphoenol pyruvate

ICD:

isocitrate dehydrogenase

PCR:

photosynthetic carbon reduction

BI:

branch of inflorescence

PW:

podwall

References

  • Chopra J., Kaur N., Gupta A. K. 1998. Carbohydrate status and sucrose metabolism in mungbean roots and nodules. Phytochem. 49: 1891–1895.

    Article  CAS  Google Scholar 

  • Chopra J., Kaur N., Gupta A. K. 2000. Ontogenic changes in enzymes of carbon metabolism in relation to carbohydrate status in developing mungbean reproductive structures. Phytochem. 53: 539–548.

    Article  CAS  Google Scholar 

  • Chopra J., Kaur N., Gupta A. K. 2002. A comparative developmental pattern of enzymes of carbon metabolism and pentose phosphate pathway in mungbean and lentil nodules. Acta Physiol. Plant. 24: In Press

  • Christeller J. T., Laing W. A., Sutton W. D. 1977. Carbon dioxide fixation by lupin root nodules. I. Characterization, association with phosphoenol-pyruvate carboxylase, and correlation with nitrogen fixation during nodule development. Plant Physiol. 60: 47–50.

    PubMed  CAS  Google Scholar 

  • Claussen W., Hawker J. S., Loveys B. R. 1985. Sucrose synthase activity, invertase activity, net photosynthetic rates and carbohydrate content of detached stems and shoots (sinks). J. Plant Physiol. 119: 123–132.

    CAS  Google Scholar 

  • Echeverria E., Humphreys T. 1984. Involvement of sucrose synthase in sucrose catabolism. Phytochem. 23: 2173–2178.

    Article  CAS  Google Scholar 

  • Edwards J., apRees T. 1986. Sucrose partitioning in developing embryos of round and wrinkled varieties of Pisum sativum. Phytochem. 25: 2027–2032.

    Article  CAS  Google Scholar 

  • Estruch J. J., Beltren J. P. 1991. Changes in invertase activities precede ovary growth induced by gibberellic acid in Pisum sativum. Physiol. Plant. 81: 319–326.

    Article  CAS  Google Scholar 

  • Gupta V. K., Singh R., Prasad B. N., Ghimire G. P. S., Agarwal V. P. 1992. In: B.N. Prasad and G.P.S. Ghimire, (Eds). Role of biotechnology in Agriculture. Podwall metabolism in relation to dry matter and protein accumulation in developing seeds of chickpea (Cicer arietinum L.). pp. 21–36.

  • Heim U., Weber H., Baumlein H., Wobus U. 1993. A sucrose-synthase gene of Vicia faba L: expression pattern in developing seeds in relation to starch synthesis and metabolic regulation. Planta 191: 394–401.

    Article  PubMed  CAS  Google Scholar 

  • Huber S. C., Akazawa T. 1986. A novel sucrose synthase pathway for sucrose degradation in cultured sycamore cells. Plant Physiol. 81: 1008–1013.

    PubMed  CAS  Google Scholar 

  • Iglesias A. A., Andreo C. S. 1990. Kinetic and structural properties of NADP-malic enzyme from sugarcane leaves. Plant Physiol. 92: 66–72.

    PubMed  CAS  Google Scholar 

  • Latzko E., Kelly G. J. 1983. The many-faceted function of phosphoenolpyruvate carboxylase in C3 plants. Physiol. Veg. 21: 805–815.

    CAS  Google Scholar 

  • Lee Y. P. and Takahashi T. 1966. An improved colorimetric determination of amino acid with the use of nihydrin. Anal. Biochem. 14: 71–77.

    Article  CAS  Google Scholar 

  • Lowell C. A., Kuo T. M. 1989. Oligosaccharide metabolism and accumulation in developing soybean seeds. Crop Sci. 29: 459–465.

    Article  CAS  Google Scholar 

  • Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951. Protein measurement with Folin phenol reagent. J. Biol. Chem. 93: 265–275.

    Google Scholar 

  • Minamikawa T., Yamauchi D., Wade S., Takeuchi H. 1992. Expression of α-amylase in Phaseolus vulgaris and Vigna mungo plants. Plant Cell Physiol. 33: 253–258.

    CAS  Google Scholar 

  • Murray D. R. 1987. Nutritive role of seed coats in developing legume seeds. Am. J. Bot. 74: 1122–1137.

    Article  CAS  Google Scholar 

  • Nelson N. 1944. A photometric adaptation of Somogyi method for the determination of glucose. J. Biol. Chem. 157: 375–380.

    Google Scholar 

  • Peoples M. B., Atkins C. A., Pate J. S., Murray D. R. 1985. Nitrogen nutrition and metabolic interconversions of nitrogenous solutes in developing cowpea fruit. Plant Physiol. 77: 382–388.

    PubMed  CAS  Google Scholar 

  • Ross H. A., McRae D., Davies H. V. 1996. Sucrolytic enzyme activities in cotyledons of the faba bean. Developmental changes and purification of alkaline invertase. Plant Physiol. 111: 329–338.

    PubMed  CAS  Google Scholar 

  • Sharma N., Kaur N., Gupta A. K. 1998. Effect of chlorocholine chloride sprays on carbohydrate composition and activities of sucrose metabolizing enzymes in potato (Solanum tuberosum L.). Plant Growth Regulation 26: 97–103.

    Article  CAS  Google Scholar 

  • Singal H. R., Sheoran I. S., Singh R. 1986. Products of photosynthetic 14CO2 fixation and related enzyme activities in fruiting structures of chickpea. Physiol. Plant. 66: 457–462.

    Article  CAS  Google Scholar 

  • Solanki I. S., Kapoor A. C., Singh U. 1999. Nutritional parameters and yield evaluation of newly developed genotypes of lentil. Plant food for human nutrition 54: 79–87.

    Article  CAS  Google Scholar 

  • Sung S. S., Sheih W. J., Geiger D. R., Black C. C. 1994. Growth, sucrose synthase and invertase activities of developing Phaseolus vulgaris L. fruits. Plant Cell Environ. 17: 419–426.

    Article  CAS  Google Scholar 

  • Sung S. S., Xu D. P., Black C. C. 1989. Identification of actively filling sucrose sinks. Plant Physiol. 89: 1117–1121.

    PubMed  CAS  Google Scholar 

  • Tezuka T., Yamamoto Y., Kondo N. 1990. Activation of oxygen uptake and NAD-specific isocitrate dehydrogenase in mitochondria isolated from cotyledons of castor bean by cis, trans-abscisic acid. Plant Physiol. 92: 147–150.

    PubMed  CAS  Google Scholar 

  • Van Handel E. 1968. Direct microdetermination of sucrose. Anal. Biochem. 22: 280–283.

    Article  PubMed  Google Scholar 

  • Weber H., Borisjuk L., Wobus U. 1997. Sugar import and metabolism during seed development. Trends Pl. Sci. 2: 169–174.

    Article  Google Scholar 

  • Williard L. M., Slattery M. 1945. The colorimetric determination of fructosan in plant material. J. Biol. Chem. 157: 161–167.

    Google Scholar 

  • Wolswinkel P., Ammerlaan A. 1984. Turgor-sensitive sucrose and amino acid transport into developing seeds of Pisum sativum. Effect of high sucrose or mannitol concentration in experiments with empty ovules. Physiol. Plant. 61: 172–182.

    Article  CAS  Google Scholar 

  • Xu D. P., Sung S. J. S., Black C. C. 1989. Sucrose metabolism in lima bean seeds. Plant Physiol. 89: 1106–1116.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil K. Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chopra, J., Kaur, N. & Gupta, A.K. Changes in the activities of carbon metabolizing enzymes with pod development in lentil (Lens culinaris L.). Acta Physiol Plant 25, 185–191 (2003). https://doi.org/10.1007/s11738-003-0052-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-003-0052-x

Key words

Navigation