Skip to main content

ABA and gibberellin-like substances during prehardening, cold acclimation, de- and reacclimation of oilseed rape

Abstract

Previously published results showed that high relative reduction state of PSII (PSII excitation pressure) during both early seedling growth (prehardening) as well as cold deacclimation caused significant changes in growth pattern. The differences in elongation growth rate were related to the cold acclimation of photosynthetic apparatus and to frost resistance. To study changes in the hormonal balance connected with alterations in elongation growth rate observed during prehardening and deacclimation under different PSII excitation pressure (modulated by day-temperatures), endogenous concentration of ABA, GA3 and GA-like substances (GAs) were analysed. Analyses were also performed during cold acclimation and reacclimation of plants characterized by different elongation growth rate triggered by prehardening or deacclimation under different day-temperatures. Growth under high PSII excitation pressure (prehardening) resulted in a significant increase in ABA and a considerable decrease in GAs contents. On the other hand, different ABA content played almost no role in controlling growth rate during cold deacclimation and subsequent reacclimation, when the induction of elongation growth was connected with the changes in concentration of GAs including GA3. The possible role of ABA and GAs in controlling prehardening, cold acclimation and deacclimation is discussed.

This is a preview of subscription content, access via your institution.

Abbreviations

ABA:

abscisic acid

CE-MS:

capillary electrophoresis-mass spectroscopy

DW:

dry weight

ELISA:

enzyme-linked immunosorbent assay

FW:

fresh weight

GAs:

gibberellin-like substances

qp :

photochemical quenching of chlorophyll a fluorescence

1-qp :

PSII excitation pressure

References

  1. Adams W.W. III, Demmig-Adams B., Verhoeven A.S., Barker D.H. 1995. ‘Photoinhibition’ during winter stress: involvement of sustained xantophyll cycledependent energy dissipation. Aust. J. Plant Physiol. 22: 261–276

    CAS  Article  Google Scholar 

  2. Carter J.V., Brenner M.L. 1985. Plant growth regulators and low temperature stress. In: Pharis R.P., Reid D.M. (eds). Hormonal regulation of development, III. Role of environmental factors. Encycl. Plant Physiol., New Series, vol 11. Springer-Verlag, Berlin — Heidelberg, p. 418–443.

    Google Scholar 

  3. Chang S.T., Chen W.S., Hsu C.Y., Yu H.C., Du B.S., Huang K.L. 1999. Changes in cytokinin activities before, during and after floral initiation in Polianthes tuberosa. Plant Physiol. Bioch. 7: 679–684.

    Article  Google Scholar 

  4. Dörffling K., Schulenburg S., Lesselich G, Dörffling H. 1990. Abscisic acid and proline levels in cold hardened winter wheat leaves in relation to variety-specific differences in freezing resistance. J. Agron. Crop Sci. 165: 230–239.

    Google Scholar 

  5. Dallaire S., Houde M., Gagne Y., Saini H.S., Boileau S., Chevrier N., Sarhan F. 1994. ABA and low temperature induce freezing tolerance via distinct regulatory pathways in wheat. Plant Cell Physiol. 35: 1–9.

    CAS  Google Scholar 

  6. Frankland B., Wareing P.F. 1960. Effect of gibberellic acid on hyphocotyl growth of lettuce seedlings. Nature 185: 255–256.

    Article  Google Scholar 

  7. Hansen H., Dörffling K. 1999. Changes in free and conjugated abscisic acid and phaseic acid in xylem sap of drought-stressed sunflower plants. J. Exp. Bot. 50: 1599–1605.

    Article  CAS  Google Scholar 

  8. Havaux M., Strasser R.J., Greppin H. 1991. Theoretical and experimental analysis of the q p andqn coefficients of chlorophyll fluorescence quenching and their relation to photochemical and nonphotochemical events. Photosynth Res 27: 41–55

    Article  CAS  Google Scholar 

  9. Huner N.P.A., Öquist G., Hurry V.M., Krol M., Falk S., Griffith M. 1993. Photosynthesis, photoinhibition and low temperature acclimation in cold tolerant plants. Photosynth. Res. 37: 19–39.

    Article  CAS  Google Scholar 

  10. Huner N.P.A., Öquist G., Sarhan F. 1998. Energy balance and acclimation to light and cold. Trends Plant Sci. 3: 224–230.

    Article  Google Scholar 

  11. Ivanov A.G., Krol M., Maxwell D., Huner N.P.A. 1995. Abscisic acid induced protection against photoinhibition of PSII correlates with enhanced activity of the xantophyll cycle. FEBS Let. 371: 61–64.

    Article  CAS  Google Scholar 

  12. Junttila O. 1997. Environmental and hormonal control of acclimation and deacclimation. In: Molecular and physiological aspects of cold and chilling tolerance of northern crops. The Finnish — Japanease Workshop, Jokioinen, March 17–20.1997, p. 78–87.

  13. Kacperska-Palacz A. 1978. Mechanisms of cold acclimation in herbaceous plants. In: Li P.H., Sakai A. (eds) Plant cold hardiness and freezing stress. Mechanisms and crop implications. Academic Press, New York, p. 139–152.

    Google Scholar 

  14. Kacperska A., Szaniawski R.K. 1993. Frost resistance and water status of winter rape leaves as affected by differential shoot/root temperature. Physiol. Plant. 89: 775–782.

    Article  CAS  Google Scholar 

  15. Kende H., Zeevaart J.A.D. 1997. The five “classical” plant hormones. Plant Cell 9: 1197–1210.

    PubMed  Article  CAS  Google Scholar 

  16. Knight H., Knight M.R. 2001. Abiotic stress signalling pathways: specificity and cross-talk. Tr. Plant Sci. 6: 262–267.

    Article  CAS  Google Scholar 

  17. Levitt J. 1972. Responses of plants to environmental stresses. Academic Press, New York.

    Google Scholar 

  18. Okagami N. 1971. Sensitive biological detection of gibberellins by lettuce hyphocotyl growth. Sci. Rep. Tohoku Univ. Ser. IV (Biol.) 36: 7–10.

    CAS  Google Scholar 

  19. Plieth C. 2001. Plant calcium signaling and monitoring: pros and cons and recent experimental approaches. Protoplasma 218: 1–23.

    PubMed  Article  CAS  Google Scholar 

  20. Pearce, R.S. 1999. Molecular analysis of acclimation to cold. Plant Growth. Regul. 29: 47–76.

    Article  CAS  Google Scholar 

  21. Rapacz M. 1998a. The effects of day and night temperatures during early growth of winter oilseed rape (Brassica napus L var. oleifera cv. Gorczanski) seedlings on their morphology and cold acclimation responses. Acta Physiol. Plant. 20: 67–72.

    Article  Google Scholar 

  22. Rapacz M. 1998b. The after-effects of temperature and irradiance during early growth of winter oilseed rape (Brassica napus L var. oleifera cv. Gorczanski) seedlings on the progress of their cold acclimation. Acta Physiol Plant 20: 73–78.

    Article  Google Scholar 

  23. Rapacz M. 1998c. Physiological effects of winter rape (Brassica napus var. oleifera) prehardening to frost. II. Growth, energy partitioning and water status during cold acclimation. J. Agron. Crop. Sci. 181: 81–87.

    Google Scholar 

  24. Rapacz M. 2002a. Regulation of frost resistance during cold deacclimation and reacclimation in oilseed rape. A possible role of PSII redox state. Physiol. Plant., 115: 236–243.

    PubMed  Article  CAS  Google Scholar 

  25. Rapacz M. 2002b. Cold-deacclimation of oilseed rape (Brassica napus var. oleifera) in response to fluctuating temperatures and photoperiod. Ann. Bot. 89: 543–549.

    PubMed  Article  CAS  Google Scholar 

  26. Rapacz M. 2002c. The effect of ABA and GA3 treatments on resistance to frost and photoinhibition in oil-seed rape leaf discs. Acta Physiol. Plant. 24: 447–457.

    Article  CAS  Google Scholar 

  27. Rapacz M., Chilmonik E. 2000. Does the lack of vernalization requirement interfere with winter survival of oilseed rape plants? Acta Physiol. Plant. 22: 143–149.

    Google Scholar 

  28. Rapacz M., Hura K. 2002. The pattern of changes in photosynthetic apparatus in response to cold acclimation and deacclimation in two contrasting cultivars of oilseed rape. Photosynthetica 40: 63–69.

    Article  Google Scholar 

  29. Rapacz M., Janowiak F. 1998. Physiological effects of winter rape (Brassica napus var. oleifera) prehardening to frost. I. Frost resistance and photosynthesis during cold acclimation. J. Agron. Crop. Sci. 181: 13–20.

    CAS  Article  Google Scholar 

  30. Rapacz M., Tokarz K., Janowiak F. 2001. The initiation of elongation growth during long-term low-temperature stay of spring-type oilseed rape may trigger loss of frost resistance and changes in photosynthetic apparatus. Plant Sci. 161: 221–230.

    PubMed  Article  CAS  Google Scholar 

  31. Rood S.B., Mandel R., Pharis R.P. 1989. Endogenous gibberellins and shoot growth and development in Brassica napus. Plant Physiol. 89: 269–273.

    PubMed  CAS  Google Scholar 

  32. Saradhi P.P., Suzuki I., Katoh A., Sakamoto A., Sharmila P., Shi D.J., Murata N. 2000. Protection against the photo-induced inactivation of the photosystem II complex by abscisic acid. Plant Cell Environ. 23: 711–718.

    Article  CAS  Google Scholar 

  33. Shinozaki K., Yamaguchi A., Shinozaki K. 2000. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signalling pathways. Curr. Op. Plant Biol. 3: 217–223.

    CAS  Google Scholar 

  34. Smoleńska-Sym G., Gawronska H., Kacperska A. 1995. Modifications of abscisic acid level in winter oil-seed rape leaves during acclimation of plants to freezing temperatures. Plant Growth Regul. 17: 61–65.

    Google Scholar 

  35. Stefanowska M., Kuras M., Kubacka-Zębalska M., Kacperska A. 1999. Low temperature affects pattern of leaf growth and structure of cell walls in winter oilseed rape (Brassica napus L., var. oliefera L.). Ann. Bot. 84: 313–319.

    Article  Google Scholar 

  36. Taylor J.S., Bhalla M.K., Robertson J.S., Piening L.J. 1989. Cytokinins and abscisic acid in hardening winter wheat. Can. J. Bot. 68: 1597–1601.

    Google Scholar 

  37. Vettakkorumakankav N.N., Falk D., Saxena P., Fletcher R.A. 1999. A crucial role for gibberellins in stress protection of plants. Plant Cell Physiol. 40: 542–548.

    CAS  Google Scholar 

  38. Walker-Simmons M.K. 1987. ABA level and sensitivity in developing wheat embryos of sprouting resistant and suspectible cultivars. Plant Physiol. 84: 61–66.

    PubMed  CAS  Article  Google Scholar 

  39. Yeo S.K., Lee H.K., Li S.F.Y. 1992. Separation of plant growth regulators by capillary electrophoresis. Journal of Chromatography 594: 335–340.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marcin Rapacz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rapacz, M., Waligórski, P. & Janowiak, F. ABA and gibberellin-like substances during prehardening, cold acclimation, de- and reacclimation of oilseed rape. Acta Physiol Plant 25, 151 (2003). https://doi.org/10.1007/s11738-003-0048-6

Download citation

Key words

  • abscisic acid
  • Brassica napus var. oleifera
  • cold acclimation
  • cold deacclimation
  • gibberellins
  • growth rate
  • prehardening
  • PSII excitation pressure