Skip to main content

Advertisement

Log in

Comparative responses of three fuel wood yielding plants to PEG-induced water stress at seedling stage

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Three species of fast growing fuel wood yielding plants locally available (Acacia holosericea, Bauhinia variegata and Cassia siamea) were characterized in respect of their responses to water stress. Seedlings (25 days) of these species, exposed to two levels of water stress (−0.5 and −1.0 MPa) induced by PEG-6000 for 24 h, were analysed for relative water content (RWC) and the contents of chlorophyll, protein, soluble sugars and proline in leaves along with activities of catalase, peroxidase and superoxide dismutase (SOD). RWC was lower in stressed compared to the unstressed seedlings. However, stress-induced decline in RWC was lowest in B. variegata. Chlorophyll and protein contents declined with increasing levels of water stress, decline being least in B. variegata. Soluble sugar and proline contents increased under water stress particularly in B. variegata. The enzyme activity of catalase (EC-1.11.1.6), peroxidase (EC-1.11.1.7) and SOD (EC-1.15.1.1) decreased with increased levels of water stress. Such decline in the activity of these enzymes was least in B. variegata. Apparently, B. variegata is potentially the species most tolerant to water stress among these three fuel wood-yielding plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PEG:

Polyethylene glycol

MPa:

Megapascals

SOD:

Superoxide dismutase

References

  • Arnon D. I. 1949. Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol., 24: 1–15.

    PubMed  CAS  Google Scholar 

  • Aspinall D., Paleg L. G. 1981. Proline accumulation. Physiological aspects. In: Physiology and Biochemistry of Drought Resistance in Plants, ed. by L.G. Paleg, D. Aspinall, Academic press, New York: 205–240.

    Google Scholar 

  • Bates L. S., Waldren R. P., Teare I. D. 1973. Rapid determination of free proline for water stress studies. Plant Soil, 39:205–208.

    Article  CAS  Google Scholar 

  • Bewley J. D., Krochko J. E. 1982. Desiccation tolerance, In: Encyclopedia of Plant Physiology, ed. by O. L. Lange, P. S. Nobel, C. B. Osmond, H. Ziegler. New series, Vol. 12B, Physiologia Ecology II, Springer-Verlag, Berlin, New York: 325–378.

    Google Scholar 

  • Biswas A. K., Choudhuri M. A. 1978. Differential behaviour of the flag leaf of intact rice plant during ageing. Biochem. Physiol. Pflanzen., 173: 220–228.

    CAS  Google Scholar 

  • Björkman O., Powles S. B., Fork D. C., Oquist G. 1981. Interaction between high irradiance and water stress on photosynthetic reactions. Carnegie Inst. Washington Yearbook, 80: 57–59.

    Google Scholar 

  • Bryant G., Koster K. L., Wolfe J. 2001. Membrane behavior in seeds and other systems at low water content: the various effects of solutes. Seed Science Research, 11: 17–25.

    CAS  Google Scholar 

  • Chakraborty U., Dutta S., Chakraborty B. 2001. Drought induced biochemical changes in young tea leaves. Indian J. Plant Physiol., 6: 103–106.

    Google Scholar 

  • Chance B., Maehly A. C. 1955. Assay of catalase and peroxidases. Methods Enzymol., 2: 764–775.

    Article  Google Scholar 

  • Chowdhury S. R., Choudhuri M. A. 1986. Proline accumulation under water deficit stress and its utilization following stress release in two jute (Corchorus) species. Indian J. Exp. Biol., 24: 605–607.

    CAS  Google Scholar 

  • Dwivedi S., Kar M., Misra D. 1979. Biochemical changes in excised leaves of Oryza sativa subjected to water stress. Physiol. Plant., 45: 34–40.

    Article  Google Scholar 

  • Elstner E. F. 1982. Oxygen activity and oxygen toxicity. Ann. Rev. Plant Physiol., 33: 73–96.

    Article  CAS  Google Scholar 

  • Fick N. G., Qualset C. O. 1975. Genetic control of endosperm amylase activity. Gibberellin responses in standard height and short-statured wheat. Proc. Natl. Acad. Sci., 72: 892–895.

    Article  PubMed  CAS  Google Scholar 

  • Fridovich I. 1978. The biology of oxygen radicals. Science, 201: 875–880.

    Article  PubMed  CAS  Google Scholar 

  • Fridovich I. 1995. Superoxide radical and superoxide dismutases. Ann. Rev. Biochem., 64: 97–112.

    Article  PubMed  CAS  Google Scholar 

  • Fukutoku Y., Yamada Y. 1982. Accumulation of carbohydrates and proline in water-stressed soybean (Glycine max L.). Soil. Sci. Plant Nutr., 28: 147–151.

    CAS  Google Scholar 

  • Galiba G. 1994. In vitro adaptation for drought and cold hardiness in wheat. In: Plant Breeding Reviews, ed. by J. Janick, John Wiley & Sons, Inc., Vol. 12, New York: 115–162.

    Google Scholar 

  • Giannopolitis C. N., Ries S. K. 1977. Superoxide dismutase I. Occurrence in higher plants. Plant Physiol, 59: 309–314.

    PubMed  CAS  Google Scholar 

  • Hanson A. D., Hitz W. D. 1982. Metabolic responses of mesophytes to plant water deficits. Ann. Rev. Plant Physiol., 33: 163–203.

    Article  CAS  Google Scholar 

  • Irigoyen J. J., Emerich D. W., Sanchez Diaz M. 1992. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol. Plant., 84: 55–60.

    Article  CAS  Google Scholar 

  • Jha B. N., Singh R. A., Singh A. K. 2000. Drought tolerance in deep water rice. Indian J. Plant Physiol., 5: 377–379.

    Google Scholar 

  • Kar R. K. 2002. Studying plant responses to water stress: an overview. In: Advances in Stress Physiology of Plants, ed. by S. K. Panda, Scientific Publishers, Jodhpur, India: 61–79.

    Google Scholar 

  • Kar R. K., Choudhuri M. A. 1987. Possible mechanisms of light-induced chlorophyll degradation in senescing leaves of Hydrila verticillata. Physiol. Plant., 70: 729–734.

    Article  CAS  Google Scholar 

  • Kar M., Mishra D. 1976. Catalase, peroxidase and polyphenoloxidase activities during rice leaf senescence. Plant Physiol., 57: 315–319.

    PubMed  CAS  Google Scholar 

  • Kasturi Bai K. V., Rajagopal V. 2000. Osmotic adjustment as a mechanism for drought tolerance in coconut (Cocos nucifera L.). Indian J. Plant Physiol., 5: 320–323.

    Google Scholar 

  • Krishnamurty K. S., Ankegowada S. J., Saji K. V. 2000. Water stress effects on membrane damage and activities of catalase, peroxidase and superoxide dismutase enzymes in black pepper (Piper nigrum L.). J. Plant Biol., 27: 39–42.

    Google Scholar 

  • Lowry O. H., Rosebrough N. J., Farr A.L., Randall R. J. 1951. Protein measurement with Folin-phenol reagent. J. Biol. Chem., 193: 265–275.

    PubMed  CAS  Google Scholar 

  • McCready R.M., Guggloz J., Silviera V., Owens H. S. 1950. Determination of starch and amylase in vegetables. Analyt. Chem., 22: 1156–1158.

    Article  CAS  Google Scholar 

  • Michel B. E., Kaufmann M. R. 1973. The osmotic potential of polyethylene glycol-6000. Plant Physiol., 51: 914–916.

    PubMed  CAS  Google Scholar 

  • Mishra D., Ghosh B. K., Patra H. K., Kar M. 1978. Changes in some enzyme activities during air-drying of excised rice leaves. Z. Pflanzenphysiol., 90: 189–192.

    CAS  Google Scholar 

  • Mukherjee S. P., Choudhuri M. A. 1983. Implication of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol Plant., 58: 166–170.

    Article  CAS  Google Scholar 

  • Navari-Izzo F., Quartacci M. F., Izzo R. 1990. Water stress induced changes in protein and free amino acids in field-grown maize and sunflower. Plant Physiol. Biochem., 28: 531–537.

    CAS  Google Scholar 

  • Nilsen E. T., Orcutt D. M. 1996. The Physiology of Plants under Stress. John Wiley & Sons, Inc., New York: 336.

    Google Scholar 

  • Parker W. C., Pallardy S. G. 1985. Genotypic variation in tissue water relation of leaves and roots of black walnut (Juglans nigra) seedlings. Physiol. Plant., 64: 105–111.

    Article  Google Scholar 

  • Pastori G. M., Trippi V. S. 1993. Antioxidative protection in a drought resistant maize strain during leaf senescence. Physiol. Plant., 87: 227–231.

    Article  CAS  Google Scholar 

  • Pellinen R. I., Korhonen M. S., Tauriainen A. A., Palva E. T., Kangasjärvi J. 2002. Hydrogen peroxide activates cell death and defense gene expression in Birch 1. Plant Physiol., 130: 549–560.

    Article  PubMed  CAS  Google Scholar 

  • Phutela A., Jain V., Dhawan K., Nainawatee H. S. 2000. Proline metabolism under water stress in the leaves and roots of Brassica juncea cultivars differing in drought tolerance. J. Plant Biochem. Biotechnol., 9: 35–39.

    CAS  Google Scholar 

  • Pierre M., Savourè A. 1990. Effect of water stress and SO2 pollution on spruce endoproteases. Plant Physiol. Biochem., 28: 95–104.

    CAS  Google Scholar 

  • Rhodes D., Handa S. 1989. Amino acid metabolism in relation to osmotic adjustment in plant cells. In: Environmental Stress in Plants, ed. by J.H. Cherry, Springer-Verlag, Berlin: 41–61.

    Google Scholar 

  • RoyChowdhury S., Choudhuri M. A. 1985. Hydrogen peroxide metabolism as an index of water stress tolerance in jute. Physiol. Plant., 65: 503–507.

    Article  Google Scholar 

  • RoyChowdhury S., Choudhuri M. A. 1989. Effect of CaCl2 and ABA on changes in H2O2 metabolism in two jute species under water deficit stress. J. Plant Physiol., 135: 179–183.

    Google Scholar 

  • Roy-Macauley R., Zuily-Fodil Y., Kidric M., Pham Thi A.T., Vieira da Silva J. 1992. Effect of drought stress on proteolytic activities in Phaseolus and Vigna leaves from sensitive and resistant plants. Physiol. Plant., 85: 90–96.

    Article  CAS  Google Scholar 

  • Rubinstein B., Luster D. G. 1993. Plasma membrane redox activity: Components and role in plant processes. Ann. Rev. Plant Physiol. Plant Mol. Biol., 44: 131–155.

    Article  CAS  Google Scholar 

  • Scandalios J. G. 1993. Oxygen stress and superoxide dismutase. Plant Physiol., 101: 7–12.

    PubMed  CAS  Google Scholar 

  • Sgherri C. L. M., Navari-Izzo F. 1995. Sunflower seedlings subjected to increasing water deficit stress: Oxidative stress and defense mechanism. Physiol. Plant., 93: 25–30.

    Article  CAS  Google Scholar 

  • Singh D. V., Srivastava G. C., Abdin M. Z. 2000. Effect of benzyladenine and ascorbic acid and abscisic acid content and other metabolites in sena (Cassia angustifolia VAHL.) under water stress conditions. Indian J. Plant Physiol., 5: 127–131.

    CAS  Google Scholar 

  • Stewart C.R. 1978. Role of carbohydrates in proline accumulation in wilted barley leaves. Plant Physiol., 61: 775–778.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K., Masuda R., Sugimato T., Omasa K., Sakki T. 1990. Water deficiency induced changes in contents of defensive substances against active oxygen in spinach leaves. Agric. Biol. Chem., 54: 2629–2634.

    CAS  Google Scholar 

  • Tood G. M., Yoo B. Y. 1964. Enzymatic changes in detached wheat leaves as affected by water stress. Phyton, 21: 61–68.

    Google Scholar 

  • Venekamp J. H., Lampe J. E. M., Koot J. T. M. 1989. Organic acids as sources for drought-induced proline synthesis in field bean plants, Vicia faba L. Plant Physiol., 133: 654–659.

    CAS  Google Scholar 

  • Virk S. S., Sing O. S. 1990. Osmotic properties of drought stressed periwinkle (Catharanthus roseus) genotypes. Ann. Bot., 66: 23–30.

    Google Scholar 

  • Weatherley P. E. 1950. Studies in the water relations of the cotton plant I. The field measurement of the water deficit in the leaves. New Phytol., 49: 81–97.

    Article  Google Scholar 

  • Zhang J., Kirkham M. B. 1994. Drought stress induced change in activities of superoxide dismutase, catalase and peroxidase in wheat species. Plant Cell Physiol., 35: 785–791.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinhababu, A., Kar, R.K. Comparative responses of three fuel wood yielding plants to PEG-induced water stress at seedling stage. Acta Physiol Plant 25, 403–409 (2003). https://doi.org/10.1007/s11738-003-0022-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-003-0022-3

Key words

Navigation