Skip to main content
Log in

Activities of superoxide dismutase (SOD) isoforms during growth of Scenedesmus (chlorophyta) species and strains grown in batch-cultures

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Growth of Scenedesmus species and strains, grown for 28 days in mineral BBM medium in batch-cultures, displayed sigmoidal kinetics that comprised a lag, exponential and declining growth phases. Total SOD activity in these autotrophically cultured organisms, which oscillated within 0.6 – 1.4 Umg protein−1, was rather species-specific and only to some extent depended on the growth phase. Contrary, three S. obliquus strains: wild type 276-6, mutant with blocked PS I (strain 56.80) and mutant with blocked PS II (strain 57.80), cultured for 7 days on BBM medium supplemented with bacto-tryptone and yeast extract (BBM+) turned out to be time-dependent and to have several times higher total SOD activity than one obtained for Scenedesmus grown autotrophically. Regardless of the media composition, the phase of growth and studied organism, dominant isoforms of total SOD were together determined Fe- and Mn-SOD.

Profiles of SOD isoforms, obtained after PAGE analysis of all autotrophically and exponentially growing organisms, revealed that one Mn-SOD and one Cu/Zn-SOD bands located on gels at the same position whereas location of three bands of Fe-SOD depended on the strain. This suggests the presence of two different groups of Fe-SODs in analyzed organisms. Identical SOD profiles found in two S. armatus strains (276-4a and 276-4d) and S. subspicatus correspond well with their taxonomic position. The SOD profile of S. armatus B1-76 distinctly differed from two other S. armatus strains but was identical to S. microspinal B1-76 and S. quadricauda G-15 despite the fact that there were significant growth rate differences between these three species. SODs profiles of S. acutus 437 and S. obliguus 453 were species-specific. In S. obliquus strains cultured on BBM+ medium, there are four SOD bands: one slightly visible band of Mn-SOD, two intensive bands of Fe-SOD and one band of Cu/Zn-SOD. The above finding suggests that antioxidant response of algae kept in batch-cultures differs according to medium composition and the SOD activity mainly restricted to chloroplasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BBM:

Bold Basal Medium

BBM+:

medium supplemented with bacto-tryptone and yeast extract

E-64:

L-trans epoxysuimynyl leucynamlido 4 guamidyno butane

EDTA:

Ethylenediaminetetrateric acid

DIC:

Dissolved inorganic carbon

DTT:

Dithiotheritol

PAR:

Photosynthetically active radiation

PMSF:

Phenylmethanesulphonyl fluoride

PMSF:

Phenylmethanesulphonyl fluoride

NBT:

Nitroblue tetrazolium

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TEMED:

N,N,N′,N′-Tetramethyl-ethylendiamin

References

  • Alscher R.G., Erturk N., Health L.S. 2002. Role of superoxide dismutases (SODs) in controling oxidative stress in plants. J. Exp. Bot., 53: 1331–1340.

    Article  PubMed  CAS  Google Scholar 

  • Asada K., Badger M.R. 1984. Photoreduction of 18O2 and H2/18O2 with concomitant evolution of 16O2 in intact spinach chloroplasts: evidence for scavenging of hydrogen peroxide. Plant Cell Physiol., 25: 1169–79.

    CAS  Google Scholar 

  • Beauchamp C., Fridovich I. 1971. Superoxide dismutase: Improved assays and an assay applicable to poliacrylamide gels. Anal. Biochem., 44: 276–287.

    Article  PubMed  CAS  Google Scholar 

  • Bordo D., Djinovic K., Bolognesi M. 1994. Conserved patterns in the Cu,Zn superoxide dismutase family. J. Mol. Biol., 238: 366–386.

    Article  PubMed  CAS  Google Scholar 

  • Bowler C., van Montagu M., Inzé D., 1992. Superoxide dismutase and stress tolerance. Ann. Rev. Plant Physiol., 43: 83–116.

    Article  CAS  Google Scholar 

  • Bradford M.M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Davis B.J. 1964. Disc electrophoresis. II. Method and application to human serum proteins. Ann. Acad. Sci., 121: 404–427.

    Article  CAS  Google Scholar 

  • Fink R., Scandalios J.G. 2002. Molecular evolution and structure-function relationships of the superoxide dismutase gene families in angiosperms and their relationship to other Eukariotic and Prokariotic superoxide dismutases. Arch. Bioch. Biophys. 399: 19–36.

    Article  CAS  Google Scholar 

  • Fogg G.E., Thake B. 1987. Algal cultures and phytoplankton ecology. The University of Wisconsin Press.

  • Gędziorowska D. 1983. Isolation of Baltic unicellular algae and obtaining axenic cultures for physiological and biochemical investigations. Stud. Mat. Oceanol., 41: 209–226.

    Google Scholar 

  • van Hannen E., Fink P. and Lürling M. 2002. A revised secondary structure model for the internal transcribed spacer 2 of the green algae Scenedesmus and Desmodesmus and its implication for the phylogeny of these algae. Eur. J. Phycol., 37: 203–208.

    Article  Google Scholar 

  • Hegewald E. 1989. The Scenedesmus strains of the Culture Collection of the University of Texas in Austin (UTEX). Acta Hydrobiol. Suppl. 8.22, Algol. Stud., 55: 153–189.

    Google Scholar 

  • Lukavský J., Cepák V., Komárek J., Kašparková M., Takáčová M. 1992. alogue of algal and cyanobacterial strains of Culture Collection of Autotrophic Organisms at Třeboň, Czech Republic (CCALA). Algol. Stud., 63: 59–112.

    Google Scholar 

  • Kanematsu S., Asada K. 1979. Ferric and manganic superoxide dismutases in Euglena gracilis. Arch. Biochem. Biophys., 195: 535–545.

    Article  PubMed  CAS  Google Scholar 

  • Kessler E., Schäfer M., Hümmer C., Kloboucek A., Huss V.A.R. 1997. Physiological, biochemical and molecular characters for the taxonomy of subgeneras Scenedesmus (Chlorococales, Chlorophyta). Bot. Acta, 110: 244–250.

    Google Scholar 

  • Kephart S.R. 1990. Starch gel electrophoresis of plant isoenzymes: a comparative analysis of techniques. Am. J. Bot., 77: 693–712.

    Article  CAS  Google Scholar 

  • Malanga G., Puntarulo S. 1995. Oxidative stress and antioxidants content in Chlorella vulgaris after exposure to ultra violet-B radiation. Physiol. Plant., 94: 672–679.

    Article  CAS  Google Scholar 

  • Mallick N., Mohn F.H., 2000. Reactive oxygen species: response of algal cells. J. Plant Physiol., 157: 183–193.

    CAS  Google Scholar 

  • Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Sci., 7: 405–410.

    Article  CAS  Google Scholar 

  • Nichols W.H., Bold H.C. 1965. Trichosarcina polymorpha Gen. et Sp. Nov. J. Phycol., 1: 34–38.

    Article  Google Scholar 

  • Nichols W. H. 1973. Growth media-freshwater. In: Handbook of Phycological Methods. Culture Methods and Growth Measurements. Ed. by Janet R. Stein, Cambridge University Press, 7–24.

  • Ogawa K., Kanematsu S., Asada K. 1996. Intra- and extra-cellular localization of “cytosolic” Cu/Zn superoxide dismutase in spinach leaf hypocotyl. Plant Cell Physol., 37: 790–799.

    CAS  Google Scholar 

  • Okada S., Kanematsu S. Asada K. 1979. Intracellular distribution of manganese and ferric superoxide dismutases in blue-green algae. FEBS Letters, 103: 106–110.

    Article  CAS  Google Scholar 

  • Okamoto O., Casano C. 1996. Effect of cadmium on growth and superoxide dismutase activity of the marine microalga Tetraselmis gracilis (Prasinophyceae) J. Phycol., 32: 74–79.

    Article  CAS  Google Scholar 

  • Okamoto O., Robertson D., Fagan T., Hastings J., Colepicolo P. 2001. Different regulatory mechanisms modulate the expression of a Dinnoflagellate iron-superoxide dismutase. J. Biol. Chem., 276: 19988–19993.

    Google Scholar 

  • Polle A. 2001. Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling. Computer simulation as a step towards flux analysis. Plant Physiol., 126: 445–462.

    Article  PubMed  CAS  Google Scholar 

  • Rossa M.M., de Oliveira M.C., Okamoto O.K., Lopes P.F., Colepicolo P. 2002. Effect of visible light on superoxide dismutase (SOD) activity in the red alga Gracilariopsis tenuifrons (Gracilariales, Rhodophyta). J. Appl. Phycol., 14: 151–157.

    Article  CAS  Google Scholar 

  • Scandalios J. 1993. Oxygen stress and superoxide dismutase. Plant Physiol., 101: 7–12.

    PubMed  CAS  Google Scholar 

  • Schlösser U.G. 1994. Sammlung von Algenkulturen at the University of Göttingen. Catalogue of Strains. Bot. Acta, 107: 113–186.

    Google Scholar 

  • Shiraiwa Y., Goyal A. Tolbert N.E. 1993. Alkalization of the medium by unicellular green algae during uptake of dissolved inorganic carbon. Plant Cell Physiol., 34(5): 649–657.

    CAS  Google Scholar 

  • Siguad-Kutner T.C.S., Pinto E., Okamoto O.K., Colepicolo P. 2002. Changes in superoxide dismutase activity and photosynthetic pigment content during growth of marine phytoplankters in batch-cultures. Physiol. Plant., 114: 566–571.

    Article  Google Scholar 

  • Starr R., and Zeikus J.A. 1993. UTEX — The Culture Collection of Algae at the University of Texas at Austin J. Phycol., 29 Suppl., 1–97.

    Article  Google Scholar 

  • Tukaj Z., Bohdanowicz J. 1995. Sensitivity to fuel oil and cell wall structure of some Scenedesmus (Chlorococcales) species. Acta Soc. Bot. Pol., 64: 139–147.

    Google Scholar 

  • Youn H., Kim E., Roe J., Hah Y. Kang. 1996. A novel nickel-containing superoxide dismutase from Streptomyces spp. J. Biochem., 318: 889–896.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Tukaj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pokora, W., Reszka, J. & Tukaj, Z. Activities of superoxide dismutase (SOD) isoforms during growth of Scenedesmus (chlorophyta) species and strains grown in batch-cultures. Acta Physiol Plant 25, 375–384 (2003). https://doi.org/10.1007/s11738-003-0019-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-003-0019-y

Key words

Navigation