Skip to main content
Log in

Differential antioxidant enzyme and thiol responses of tolerant and non-tolerant clones of Chloris barbata to cadmium-stress

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Tolerant and non-tolerant clones of Chloris barbata Sw. obtained, respectively, from an erstwhile mercury contaminated solid waste dump site near a chloralkali plant and a non-contaminated (control) site were subjected to cadmium-stress by growing the rooted cuttings in water containing CdSO4, 13 and 130 µM. Differences between the two clones in their response to cadmium-stress were noted in root growth, and also with respect to certain biochemical parameters. Whereas catalase activity decreased and non protein-thiol levels increased in the non-tolerant clone, the level of protein-thiol alone increased significantly in the tolerant clone in response to cadmium-stress. No remarkable differences between the clones, however, were noted with respect to total soluble protein, peroxidase activity and lipid peroxidation. Remarkably the two clones responded differently to buthionine sulfoximine, an inhibitor of glutathione and/or phytochelatin synthesis, which inhibited root growth significantly in non-tolerant clone but not in the tolerant clone. Buthionine sulfoximine, nonetheless, could potentate cadmium toxicity in either of the clones, but more effectively in the tolerant clone. The high sensitivity of tolerant-clone to the combined treatment of BSO and Cd in the present study could, therefore, be attributed to the cumulative oxidative stress generated synergistically by BSO and Cd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSO:

buthionine sulfoximine

CAT:

catalase

LP:

lipid peroxidation

POD:

peroxidase

MTs:

metallothioneins

NT:

non-tolerant

NPSH:

non-protein thiol

PSH:

protein thiol

T:

tolerant

TBARS:

thiobarbituric acid reactive substances

TSH:

total thiol

PCs:

phytochelatins

References

  • Bradford A. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilising the principle of protein dye-binding. Anal. Biochem., 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Briat J.F., Lebrun M. 1999. Plant responses to metal toxicity. C. R. Acad. Sci. Paris, 322: 43–54.

    PubMed  CAS  Google Scholar 

  • Brune A., Urbach W., Dietz K.J. 1995. Differential toxicity of heavy metals is partly related to a loss of preferential extraplasmic compartmentation: a comparison of Cd-, Mo-, Ni-, and Zn-stress. New Phytol., 129: 403–409.

    Article  CAS  Google Scholar 

  • Cobbett C.S. 2000. Phytochelatin biosynthesis and function in heavy-metal detoxification. Cur. Opin. Plant Biol., 3: 211–216.

    CAS  Google Scholar 

  • diToppi L.S., Gabbrielli R. 1999. Response to cadmium in higher plants. Environ. Exp. Bot., 41: 105–130.

    Article  CAS  Google Scholar 

  • Dhindsa R. S., Plumb-Dhindsa P. and Thorpe T. K. 1981. Leaf senescence: correlated with increased levels of permeability and lipid peroxidation and decreased levels of superoxide dismuatse and catalase. J. Exp. Bot., 32: 93–101.

    Article  CAS  Google Scholar 

  • Gupta S.C., Goldshrough P.B. 1991. Phytochelatin accumulation and cadmium tolerance in selected tomato cell lines. Plant Physiol. 97: 306–312.

    PubMed  CAS  Google Scholar 

  • Harada E., Yamagnchi Y., Koijumi N., Sano H. 2002. Cadmium stress induces production of thiol compounds and transcripts for enzymes involved in sulfur assimilation pathways in Arabidopsis. J. Plant Physiol., 159: 445–448.

    Article  CAS  Google Scholar 

  • Hall J.L. 2002. Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot., 53: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Heath R.L., Packer L. 1968. Photoperoxidation of isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys., 96: 365–395.

    Google Scholar 

  • Kleinbaum D.G., Kupper L.L. 1978. Applied regression analysis and other multivariable methods. Duxbury Press. North Scituate, Massachusetts, USA.

    Google Scholar 

  • Landberg T., Greger M. 2002. Differences in oxidative stress in heavy metal resistant and sensitive clones of Salix viminalis. J. Plant Physiol., 159: 69–75.

    Article  CAS  Google Scholar 

  • Lenka M., Panda K.K., Panda B.B. 1992. Monitoring and assessment of mercury pollution in the vicinity of chloralkali plant IV. Bioconcentration of mercury in situ aquatic and terrestrial plants at Ganjam, India. Arch. Environ. Contam. Toxicol., 22: 195–202.

    Article  PubMed  CAS  Google Scholar 

  • Lenka M., Das B.L., Panda K.K., Panda B.B. 1993. Mercury tolerance of Chloris barbata Sw. and Cyperus rotundus L. isolated from contaminated sites. Biol. Plant., 35: 443–446.

    Article  CAS  Google Scholar 

  • Maehly A.C., Chance B. 1967. The assay of catalases and peroxidases. In: Methods of Biochemical Analysis, Vol 1, ed. by D. Glick, Interscience Publishers, New York,: 357–424.

    Google Scholar 

  • Mittal R., Dubey R.S. 1995. Influence of sodium chloride salinity on polyphenol oxidase and catalase activities in rice seedlings differing in salt tolerance. Tropical Sci., 35: 141–149.

    Google Scholar 

  • Olmos E. Martinez-Solano J. R., Piqueras A., Hellin E. 2003. Early steps in the oxidative burst induced by cadmium in cultured tobaccocells (BY-2 line). J. Exp. Bot., 54: 291–301.

    Article  PubMed  CAS  Google Scholar 

  • Patra J., Lenka M., Panda B.B. 1994. Tolerance and co-tolerance of the grass Chloris barbata Sw. to mercury, cadmium and zinc. New Phytol., 128: 165–171.

    Article  CAS  Google Scholar 

  • Patra J., Panda B.B. 1998. A comparison of biochemical responses to oxidative and metal stress in seedlings of barley, Hordeum vulgare L. Environ. Pollut. 101: 99–105.

    Article  PubMed  CAS  Google Scholar 

  • Raskin I. 1996. Plant genetic engineering may help with environmental cleanup. Proc. Natl. Acad. Sci., USA, 93: 3164–3166.

    Article  PubMed  CAS  Google Scholar 

  • Rauser W.E. 1990. Phytochelatins. Ann. Rev. Biochem., 109: 1141–1149.

    Google Scholar 

  • Robinson N.J., Tommey A.M., Kuske C., Jackson P.J. 1993. Plant metallothioneins. Biochem. J., 295: 1–10.

    PubMed  CAS  Google Scholar 

  • Salt D.E., Blaylock M., Kumar N.P.B.A., Dushenkov V., Ensley B., Chet I., Raskin I. 1995. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology, 13: 468–474.

    Article  PubMed  CAS  Google Scholar 

  • Sandalio L.C., M. Dalurzo H. C., Gomez M., Romero-Puertas M., del Rio L. A. 2001. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J. Exp. Bot., 52: 2115–2126.

    PubMed  CAS  Google Scholar 

  • Schat H., Kalff M.M.A. 1992. Are phytochelatins involved in differential metal tolerance or do they merely reflect metal imposed strain? Plant Physiol. 99: 1475–1480.

    Article  PubMed  CAS  Google Scholar 

  • Schützendübel A., Polle A. 2002. Plant responses to abiotic stress: heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot., 53: 1351–1365.

    Article  PubMed  Google Scholar 

  • Sedlak J., Lindsay R.H. 1969. Estimation of total protein bound, non-protein sulfahydryl groups in tissue with Ellman’s reagent. Anal. Biochem., 25: 1031–1035.

    Google Scholar 

  • Siedlecka A., Tukendorf A., Skórzyńska-Polit E., Maksymiec W., Wójcik M., Baszyński T., Krupa Z. 2001. Angiosperms (Asteraceae, Convolvulaceae, Fabaceae and Poaceae: other than Brassicaceae). In: Metals in the Environment, analysis by Biodiversity, ed. by M. N. V. Prasad, Marcel Dekker, New York, USA: 171–217.

    Google Scholar 

  • Steffens J.C. 1990. Heavy metal stress and phytochelatin response. In: Stress Response in Plants: Adaptation and Acclimation Mechanisms, ed. by R.G. Alscher, J. R. Cumming, Wiley-Liss, New York,: 377–394.

    Google Scholar 

  • Vangronsveld J., Clijsters H. 1994. Toxic effects of metals. In: Plants and the Chemical Elements: Biochemistry, Uptake, Tolerance and Toxicty, ed. by M. E. Farago, VCH, Weinheim, Germany: 149–177.

    Google Scholar 

  • Zenk M.H. 1996. Heavy metal detoxification in higher plants — a review. Gene, 179: 21–30.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brahma B. Panda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baisakhi, B., Patra, J., Panigrahy, R.K. et al. Differential antioxidant enzyme and thiol responses of tolerant and non-tolerant clones of Chloris barbata to cadmium-stress. Acta Physiol Plant 25, 357–363 (2003). https://doi.org/10.1007/s11738-003-0017-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-003-0017-0

Key words

Navigation