Advertisement

Acta Physiologiae Plantarum

, Volume 24, Issue 3, pp 323–329 | Cite as

Effect of culture conditions on growth of green alga — Haematococcus pluvialis and astaxanthin production

  • Usha Tripathi
  • R. Sarada
  • G. A. RavishankarEmail author
Article

Abstract

Influence of culture conditions such as light, temperature and C/N ratio was studied on growth of Haematococcus pluvialis and astaxanthin production. Light had significant effect on astaxanthin production and it varied with its intensity and direction of illumination and effective culture ratio (ECR, volume of culture medium/volume of flask). A 6-fold increase in astaxanthin production (37 mg/L) was achieved with 5.1468·107 erg·m−2·s−1 light intensity (high light, HL) at effective culture ratio of 0.13 compared to that at 0.52 ECR, while the difference in the astaxanthin production was less than 2 — fold between the effective culture ratios at 1.6175·107 erg·m−2·s−1 light intensity (low light, LL). Multidirectional (three-directional) light illumination considerably enhanced the astaxanthin production (4-fold) compared to unidirectional illumination. Cell count was high at low temperature (25 °C) while astaxanthin content was high at 35 °C in both autotrophic and heterotrophic media. In a heterotrophic medium at low C/N ratio H. pluvialis growth was higher with prolonged vegetative phase, while high C/N ratio favoured early encystment and higher astaxanthin formation.

Key words

Haematococcus pluvialis light intensity effective culture ratio C/N ratio temperature biomass astaxanthin total carotenoid chlorophyll 

List of abbreviations

BBM

Bold basal medium

ECR

effective culture ratio

KM1

heterotrophic medium

HL

high light

LL

low light

ML

multidirectional light

TC

total carotenoids

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bejarano E.R., Avalas J., Hipson E.D., Carda-Olmedo E. 1990. Photoinduced accumulation of carotene in Phycomyces. Planta., 183: 1–9.Google Scholar
  2. Ben-Amoz A., Shaish A., Avron M. 1989. Mode of action of the massively accumulated β-carotene of Dunaliella bardawii in protecting the alga against damage by excess irradiation. Plant Physiol., 91: 1040–1043.CrossRefGoogle Scholar
  3. Boussiba S., Bing W., Yuan J.P, Zarka A., Chen F. 1999. Changes in pigments profile in the green alga Haematococcus pluvialis exposed to environmental stresses. Biotech Lett., 21: 601–604.CrossRefGoogle Scholar
  4. Boussiba S., Vonshak A. 1991. Astaxanthin accumulation in the green alga H. pluvialis. Plant Cell Physiol., 32: 1077–1082.Google Scholar
  5. Cordero B., Otero A., Patino M., Arredondo B.O., Fabregas J. 1996. Astaxanthin production from the green alga Haematococcus pluvialis with different stress conditions. Biotech Lett., 18: 213–218.CrossRefGoogle Scholar
  6. Davies B.H. 1976. Carotenoids. In: Chemistry and biochemistry of plant pigments, Goodwin T.W (ed), Vol. 2, Academic Press, London, pp. 38–166.Google Scholar
  7. Johnson E.A., Schroeder W.A. 1995. Microbial carotenoids. In: Advances in Biochemical Engineering and Biotechnology. (ed.) Fiechter A, Springer-Verlag, Berlin, 53: 119–178.Google Scholar
  8. Kakizono T., Kobayashi M., Nagai S. 1992. Effect of carbon/nitrogen ratio on encystment accompanied with astaxanthin formation in a green alga, Haematococcus pluvialis. J. Ferment Bioeng., 74: 403–405.CrossRefGoogle Scholar
  9. Kanz T., Bold H.C. 1969. In physiological studies. 9. Morphological and taxonomic investigations of Nostoc and Anabaena in culture. University of Texas, publ. No. 6924. Univ. Texas, Austin Texas.Google Scholar
  10. Kobayashi M., Kakizono T., Nagai S. 1991. Astaxanthin production by a green alga Haematococcus pluvialis, accompanied with morphological changes in acetate media. J. Ferment Bioeng., 71: 335–339.CrossRefGoogle Scholar
  11. Kobayashi M., Kakizono T., Yamaguchi K., Nagai S. 1992. Effects of light intensity, light quality and illumination cycle on astaxanthin formation in a green alga Haematococcus pulvialis. J. Ferment. Bioeng., 74: 61–63.CrossRefGoogle Scholar
  12. Kobayashi M., Kakizono T., Nagai S. 1993. Enhanced carotenoid biosynthesis by oxidative stress induced cyst cells of a green alga Haematococcus pluvialis. Appl. Environ. Microbiol., 59: 867–873.PubMedGoogle Scholar
  13. Kobayashi M., Kurimura Y., Tsuji Y. 1997. Light independent, astaxanthin production by the green microalga Haematococcus pluvialis under salt stress. Biotech. Lett., 19:507–509CrossRefGoogle Scholar
  14. Lichtenthaler H.K. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology. Packer L & Douce R. Vol. 148, Academic Press, pp. 350–382.Google Scholar
  15. Lorenz T.R., Cysewski G.R 2000. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. TIBTECH 18: 160–167.Google Scholar
  16. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem., 193: 265–275PubMedGoogle Scholar
  17. Sarada R., Usha T., Ravishankar G.A. 2002. Influence of stress on astaxanthin production in Haematococcus pluvialis grown under different culture conditions. Proc. Biochem., 37: 623–627.CrossRefGoogle Scholar
  18. Tjahjono A.E., Hayama Y., Kakizono T., Tereda Y., Nishio N., Nagai S. 1994. Hyper accumulation of astaxanthin in a green alga Haematococcus pluvialis at elevated temperatures. Biotech. Lett., 16: 133–138.CrossRefGoogle Scholar
  19. Usha T., Sarada R., Ramachandra Rao S., Ravishankar G.A. 1999. Production of astaxanthin in Haematococcus pluvialis cultured in various media. Bioresource Technol., 68: 197–199.CrossRefGoogle Scholar
  20. Whitelam G.C., Codd G.A 1982. A rapid whole cell assay for superoxide dismutase. Anal. Biochem., 121: 207–212.PubMedCrossRefGoogle Scholar

Copyright information

© Department of Plant Physiology 2002

Authors and Affiliations

  1. 1.Plant Cell Biotechnology DepartmentCentral Food Technological Research InstituteMysoreIndia

Personalised recommendations