Skip to main content
Log in

Water relations, gas exchange characteristics, and the level of some metabolites in two cultivars of spring wheat under different N regimes

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Twenty eight-day old plants of two spring wheat cultivars differing in salinity tolerance were subjected to varying levels of nitrogen (56, 112, and 224 mg N·kg−1 soil) for 42 days. Both cultivars performed differently under varying soil N levels in terms of growth, and grain yield and yield components. Nitrogen levels, 112 and 224 mg·kg−1 soil, caused maximal growth in Sarsabz and Barani-83, respectively. Cv Sarsabz maintained higher leaf water and turgor potentials, but lower leaf osmotic potential than those of Barani-83 at all external N regimes. Sarsabz had higher Chl a, Chl b and carotenoids contents in leaves than those in Barani-83 at 56 and 112 mg N·kg−1 soil. Sarsabz had higher contents of leaf soluble proteins, soluble sugars, and free amino acids than those in Barani-83 at all external N levels. In Barani-83 net CO2 assimilation rate remained almost unchanged, whereas in Sarsabz it decreased consistently with increase in external N level. The better growth performance of Sarsabaz as compared to Barani-83 under varying soil N levels except 224 mg N·kg−1 soil was associated with maintenance of high leaf turgor potential but not with net CO2 assimilation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anonymous 1997. Silver Jubilee of NIAB, Fifth Five Year Report. p. 126. Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan.

  • Arnon D.T. 1949. Copper enzyme in isolated chloroplast polyphenoloxidase in Beta vulgaris. Plant Physiol. 24, 1–15.

    PubMed  CAS  Google Scholar 

  • Ashraf M. 1994. Breeding for salinity tolerance in plants. CRC Crit. Rev. Plant Sci. 13: 17–42.

    Article  Google Scholar 

  • Ashraf M., McNeilly T. 1994. Responses of three arid zone grasses to N deficiency: A greenhouse study. Arid Soil Res. Rehab. 6: 125–136.

    Google Scholar 

  • Ashraf M., Zafar Z.U. 1996. Effect of nitrogen deficiency on growth and some biochemical characteristics in salt-tolerant and salt-sensitive lines of lentil (Lens culinaris Medic.). Arch. Acker. Pfl. Boden. 40: 231–239.

    CAS  Google Scholar 

  • Ashraf M.Y., Azmi A.R., Khan A.H., Naqvi S.S.M. 1994. Water relations in different wheat (Triticum aestivum L.) genotypes under soil water deficits. Acta Physiol. Plant. 16: 231–240.

    Google Scholar 

  • Baker N.R. 1996. Photosynthesis and the environment. Kluwer, Dordrecht, Netherlands.

    Google Scholar 

  • Bates L.M., Hall A.E. 1981. Stomatal closure with soil water depletion not associated with changes in bulk leaf water status. Oecologia 50: 62–65.

    Article  Google Scholar 

  • Bidinger F.R., Mahalakshmi V., Rao G.D.P. 1987. Assessment of drought resistance in pearl millet (Pennisetum americanum (L.) Leeke). II. Estimation of genotype response to stress. Aust. J. Agric. Res. 38: 49–59.

    Article  Google Scholar 

  • Blackman P.G., Davies W.G. 1985. Root to shoot communication in maize plants of the effects of soil drying. J. Exp. Bot. 36: 39–48.

    Article  Google Scholar 

  • Chandler R.F. 1970. Overcoming physiological barriers to higher yield through plant breeding. In: Role of Fertilization in the Intensification of Agricultural Production. Int Potash Inst Bern, pp. 421–434.

  • Constable G.A., Rawson H.M. 1980. Effect of leaf position, expansion and age on photosynthesis, transpiration and water use efficiency of cotton. Aust. J. Plant Physiol. 7: 89–100.

    Article  Google Scholar 

  • Davies B.H. 1976. Carotenoids. In: Chemistry and biochemistry of plant pigments, ed. by T.W. Goodwin. 2nd ed. Academic Press, London, vol 2, pp. 38–165.

    Google Scholar 

  • De R. 1974. Cultural practices for maize, sorghum and millets. First FAO/SIDA seminar for plant scientists from Africa and Near East, Cairo, FAO Rome, pp 440–451.

  • Dietz K.J., Harris G.C. 1997. Photosynthesis under nutrient deficiency. In: Handbook of photosynthesis, ed. by M. Pessarakli. Marcel Dekker Press Inc. New York, pp. 951–975.

    Google Scholar 

  • Epstein E. 1972. Mineral Nutrition of Plants: Principles and Perspectives. Wiley, New York.

    Google Scholar 

  • Fernandes M.S., Rossiello R.O.P. 1995. Mineral nitrogen in plant physiology and plant nutrition. Crit. Rev. Plant Sci. 14: 111–148.

    Article  CAS  Google Scholar 

  • Greef J.M. 1994. Productivity of maize in relation to morphological and physiological characteristics under varying amount of nitrogen supply. J. Agron. Crop Sci. 172: 317–326.

    Article  CAS  Google Scholar 

  • Greenway H., Munns R. 1980. Mechanism of salt tolerance in non-halophytes. Annu. Rev. Plant Physiol. 31: 149–190.

    Article  CAS  Google Scholar 

  • Haeder H.E., Beringer H., Mengel K. 1977. Redistribution of 14C into the grains of two spring wheat cultivars. Z. Pflanzenern. Boden. 140: 409–419.

    Article  CAS  Google Scholar 

  • Hamilton P.B., Van Slyke D.D. 1943. Amino acid determination with ninhydrin. J. Biol. Chem. 150: 231–233.

    CAS  Google Scholar 

  • Helal M., Koch K., Mengel K. 1975. Effect of salinity and potassium on the uptake nitrogen and on nitrogen metabolism in young barley plants. Physiol. Plant. 35: 310–313.

    Article  CAS  Google Scholar 

  • Hsiao T.C. 1973. Plant response to water stress. Annu. Rev. Plant Physiol. 24: 519–570.

    Article  CAS  Google Scholar 

  • Kemmler G. 1972. Fertilizer application to modern rice and wheat cultivars in developing countries. In: Proc. 7th Fertilizer World Congress, Vienna, pp. 545–563.

  • Krampitz M.J., Klug K., Fock H.P. 1984. Rates of photosynthetic CO2 uptake, photorespiratory CO2 evolution and dark respiration in water-stressed sunflower and bean leaves. Photosynthetica 18: 329–337.

    CAS  Google Scholar 

  • Longnecker N., Robson A. 1994. Leaf emergence of spring wheat receiving varying nitrogen supply at different stages of development. Ann. Bot. 74: 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Lowry O.H., Rosebrough N.J., Farr A.L., Randal R.J. 1951. Protein measurement with Folin phenol reagent. J. Biol. Chem. 193: 265–275.

    PubMed  CAS  Google Scholar 

  • Marschner H. 1995. Mineral Nutrition of Higher Plants. 2nd edition, Academic Press, London.

    Google Scholar 

  • Mengel K., Kirkby E.A. 1987. Principles of Plant Nutrition. International Potash Institute, Bern, Switzerland.

    Google Scholar 

  • Nevins D.J., Loomis R.S. 1970. Nitrogen nutrition and photosynthesis in sugar beet (Beta vulgaris L.). Crop Sci. 10: 21–25.

    Article  CAS  Google Scholar 

  • Osonubi, O. 1985. Responses of cowpeas (Vigna unguiculata (L.) Walp) to progressive soil drought. Oecologia 66: 554–557.

    Article  Google Scholar 

  • Ponnamperuma F.N. 1976. Screening rice for tolerance to mineral stresses. In: Plant adaptation of mineral stresses in problem soils, ed. by M.J. Wright. Cornell University, Ithaca, New York, pp. 341–354.

    Google Scholar 

  • Ranjith S.A., Meinzer F.C. 1997. Physiological correlates of variation in nitrogen-use efficiency in two contrasting sugarcane cultivars. Crop Sci. 37: 818–825.

    Article  Google Scholar 

  • Sage R.F., Pearcy R.W. 1987. The nitrogen use efficiency of C3 and C4 plants. II. Leaf nitrogen effects on the gas exchange characteristics of Chenopodium album (L.) and Amaranthus retroflexus (L.). Plant Physiol. 84: 959–963.

    PubMed  CAS  Google Scholar 

  • Salisbury F.B., Ross C.W. 1992. Plant physiology. Fourth edition. Wadsworth Publ. Co., Belmont, California.

    Google Scholar 

  • Seemann J.R., Sharkey T.D. 1986. Salinity and nitrogen effects on photosynthesis, ribulose-1,5-bisphosphate carboxylase and metabolite pool size in Phaseolus vulgaris L. Plant Physiol. 82: 555–560.

    Article  PubMed  CAS  Google Scholar 

  • Snedecor G.W., Cochran W.G. 1980. Statistical methods. 7th Edition. Iowa State University Press, Ames, Iowa.

    Google Scholar 

  • Subbarao G.V., Johansen C., Slinkard A.E., Nageswara Rao R.C., Saxena N.P., Chauhan Y.S. 1995. Strategies for improving drought resistance in grain legumes. Crit. Rev. Plant Sci. 14: 469–523.

    Article  Google Scholar 

  • Taiz L., Zeiger E. 1998. Plant Physiology, 2nd edition, Sinauer Associates Inc. Publishers, Sunderland, Massachusetts.

    Google Scholar 

  • Van Oosterom E.J., Mahalakshmi V., Arya G.K., Dave H.R., Gothwal B.D., Joshi A.K., Joshi P., Kapoor R.L., Sagar P., Saxena M.B., Singhania D.L., Vyas K.L. 1995. Effect of yield potential, drought escape and drought tolerance on yield of pearl millet (Pennisetum glaucum) in different stress environments. Indian J. Agric. Res. 65: 629–635.

    Google Scholar 

  • Yemm E.W., Willis A.J. 1954. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 57: 508–514.

    PubMed  CAS  Google Scholar 

  • Yeo A.R. 1998. Molecular biology of salt tolerance in the context of whole-plant physiology. J. Exp. Bot. 49: 915–929.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ashraf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashraf, M., Arfan, M. & Ashraf, M.Y. Water relations, gas exchange characteristics, and the level of some metabolites in two cultivars of spring wheat under different N regimes. Acta Physiol Plant 24, 407–415 (2002). https://doi.org/10.1007/s11738-002-0037-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-002-0037-1

Key words

Navigation