Skip to main content

Kinetics of 14C-labelled sucrose, myo-inositol and phosphatidylcholine uptake during induction and differentiation in Brassica napus callus culture

Abstract

The uptake rate of 14C-labelled sucrose, myo-inositol and PC was studied in callus cultures of two oilseed rape cultivars, characterized by different in vitro regeneration ability. Transfer of calli onto regeneration stimulating medium resulted in changes of examined substances uptake rate, which were depended on tissue morphogenic potential. Non-regenerating calli of both cultivars increased uptake rate of sucrose whereas changes in incorporation of other compounds were under genome control. Significant increase of uptake rate of all tested compounds was observed as result of organogenesis initiation. Such differences, in the responses of organogenic and non-organogenic tissue indicate that this parameter could be useful as marker of organogenesis

A correlation was observed between the rate of sucrose uptake and its concentration in the medium, which suggests an advantage to passive transport through the callus cell membrane. Lack of such correlation in the case of other labels indicates that this processes are selective and under cell control.

This is a preview of subscription content, access via your institution.

Abbreviations

BAP:

6-benzylaminopurine

2,4-D:

2,4-dichlorophenoxyacetic acid

DPM:

disintegration per minute

DW:

dry weight

GA3 :

gibberellic acid

MS:

basal Murashige and Skoog medium (1962)

PC:

phosphatidylcholine

PI:

phosphatidylinositol

References

  1. Bhardwaj L., Mérillon J.-M., Ramawat K.G. 1995. Changes in the composition of membrane lipids in relation to differentiation in Aegle marmelos callus culture. Plant Cell Tiss. Org. Cult. 42: 33–37.

    Article  CAS  Google Scholar 

  2. Browse J., Somerville C. 1991. Glycerolipid metabolism, biochemistry and regulation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 467–506.

    Article  CAS  Google Scholar 

  3. Caldwell C. L., Withman C. E. 1987. Temperature-induced protein conformational changes in barley root plasma membrane-enriched microsomes. Plant Physiol. 84: 918–923.

    PubMed  CAS  Google Scholar 

  4. Carruthers A., Melchior D. L. 1986. How bilayer lipids affect membrane protein activity. TIBS 11:331–335,

    CAS  Google Scholar 

  5. Chuong P.V., Pauls K.P., Beversdorf W.D. 1985. A simple culture method for Brassica hypocotyl protoplasts. Plant Cell Rep. 4: 4–6.

    Article  Google Scholar 

  6. Drøbak B.K. 1992. The plant phosphoinositide system. Biochem J. 288: 697–712.

    PubMed  Google Scholar 

  7. Drory A., Borohov A., Mayak S. 1992. Transient water stress and phospholipid turnover in carnation flowers. J. Plant Physiol. 140: 116–120.

    CAS  Google Scholar 

  8. Dureja-Munjal I., Acharya M. K., Guha-Mukherjee S. 1992. Effect of hormones and spermidine on the turnover of inositolphospholipids in Brassica seedlings. Phytochemistry 31: 1161–1163.

    Article  CAS  Google Scholar 

  9. Duxbury C. L., Legge R. L., Paliyath G., Barber R. F., Thompson J. E. 1991. Alternations in membrane protein conformation in response to senescence-related changes. Phytochemistry 30: 63–68.

    Article  CAS  Google Scholar 

  10. Ettlinger C., Lehle L., 1988. Auxin induces rapid changes in phosphatidylinositol metabolites. Nature 331: 176–178.

    PubMed  Article  CAS  Google Scholar 

  11. Fuchs A., De Vries F.W. 1972. A comparison of methods for the preparation of 14C-labelled plant tissues for liquid scintillation counting. Int. Appl. Radiation Isotopes 23: 361–369.

    Article  CAS  Google Scholar 

  12. Glimelius K. 1984. High growth rate and regeneration capacity of hypocotyl protoplasts in some Brassicaceae. J. Physiol. Plant. 61: 38–44.

    Article  CAS  Google Scholar 

  13. Graham I.A., Denby K.J., Leaver C.J. 1994. Carbon catabolite repression regulates glyoxylate cycle gene expression in cucumber. Plant Cell 6: 761–772.

    PubMed  Article  CAS  Google Scholar 

  14. Hith W. D., Card P. J., Ripp K. G. 1986. Substrate recognition by a sucrose transporting protein. J. Biol. Chem. 261: 11986–11991.

    Google Scholar 

  15. Julliard J., Sossountzov L., Habricot Y., Pelletier G. 1992. Hormonal requirement and tissue competancy for shoot organogenesis intwo cultivars of Brassica napus. Physiol. Plant. 84: 521–530.

    Article  CAS  Google Scholar 

  16. Kirti P.B. 1988. Somatic embryogenesis in hypocotyl protoplast culture of rapeseed (Brassica napus L.). Plant Breeding 100: 222–224.

    Article  Google Scholar 

  17. Kuiper P.J.C. 1985. Environmental changes and lipid metabolism of higher plants. Physiol. Plant. 64: 118–122.

    Article  CAS  Google Scholar 

  18. Mangat B.S., Pelekis M. K., Cassells A.C. 1990. Changes in the starch content during organogenesis in in vitro cultured Begonia rex stem explants. Physiol. Plant. 79: 267–274.

    Article  CAS  Google Scholar 

  19. Manoharan K., Prasad R., Guha-Mukherjee S. 1987. Greening and shoot-differentiation related lipid changes in callus cultures of Datura innoxia. Phytochemistry 26: 407–410.

    Article  CAS  Google Scholar 

  20. Martin A.B., Cuadraro Y., Guerra H., Gallego P., Hita O., Martin L., Dorado A., Villalobos N. 2000. Differences in the content of total sugars, reducing sugars, starch and sucrose in embryogenic and non-embryogenic calli from Medicago arborea L. Plant Sci. 154: 143–151.

    PubMed  Article  CAS  Google Scholar 

  21. Morse M. J., Crain R. C., Coté G. G., Satter R. L. 1989. Light-stimulated inositol phospholipid turnover in Samanea saman pulvini. Plant Physiol. 89: 724–727.

    PubMed  CAS  Article  Google Scholar 

  22. Murashige T., Skoog F. 1962. A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol. Plant. 15: 473–497.

    Article  CAS  Google Scholar 

  23. Ono Y., Takahata Y., Kaizuma N. 1994. Effect of genotype on shoot regeneration from cotyledonary explants of rapeseed (Brassica napus L.) Plant Cell Rep. 14: 13–17.

    Article  CAS  Google Scholar 

  24. Orczyk W., Nadolska-Orczyk A. 1994. Plant regeneration from hypocotyl protoplasts of winter oilseed rape (Brassica napus L.). Acta Soc. Bot. Pol. 63: 147–151.

    Google Scholar 

  25. Pauk J., Fekete S., Vilkki J., Pull S. 1991. Protoplast culture and plant regeneration of different agronomically important Brassica species and varieties. J. Agric. Sci. in Finland 63: 371–378.

    Google Scholar 

  26. Pihakaski-Maunsbach K., Brauner Nygaard K., Jensen K. H., Rasmussen O. 1993. Cellular changes in early development of regenerating thin cell layer-explants of rapeseed analyzed by light and electron microscopy. Physiol. Plant. 87: 167–176.

    Article  CAS  Google Scholar 

  27. Rawal S. K., Dwivedi U. N., Khan B. M., Mascarenhas A. F. 1985. Biochemical aspects of shoot differentiation in sugarcane callus: II. Carbohydrate metabolizing enzymes. J. Plant Physiol. 119: 191–199.

    CAS  Google Scholar 

  28. Stanzel M., Sjolund R. D., Komor E. 1988. Transport of glucose, fructose and sucrose by Strepthanthus tortousus suspension cells. II. Uptake at high sugar concentrations. Planta 174: 210–216.

    Article  Google Scholar 

  29. Taylor C. B. 1997. Sweet Sensations. Plant Cell 9: 1–4.

    Article  CAS  Google Scholar 

  30. Tran Thanh Van K. 1981. Control of morphogenesis in in vitro cultures. Annu. Rev. Plant Physiol. 32: 291–311.

    Article  Google Scholar 

  31. Williams M., Francis D., Hann A. C., Harwood J. L. 1991. Changes in lipid composition during callus differentiation in cultures of oilseed rape (Brassica napus L.). J. Exp. Bot. 42: 1551–1556.

    Article  CAS  Google Scholar 

  32. Wilson K. J., Stillwell W., Maxam T., Baldridge T. 1991. Membrane fluidity changes in embryogenic and non-embryogenic cultures of Asclepias and Daucus in response to auxin removal. Physiol. Plant. 82: 633–639.

    Article  CAS  Google Scholar 

  33. Xu Z.-H., Davey M. R., Cocking E. C. 1982. Plant regeneration from root protoplasts of Brassica. Plant Sci. Lett. 24: 117–124.

    Article  Google Scholar 

  34. Żur I. 1997. Fizjologiczne wskaźniki zdolności tkanki kalusowej rzepaku (Brassica napus) do różnicowania. Praca doktorska, AR, Kraków. (Physiological indicators of differentiation ability of oilseed rape (Brassica napus) callus. Ph.D. thesis).

  35. Żur I., Skoczowski A., Niemczyk E., Dubert F. (in press). Changes in the composition of fatty acids and sterols of membrane lipids during induction and differentiation of Brassica napus (var. oleifera L.) callus. Acta Physiol. Plant., in press.

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Żur, I., Skoczowski, A., Pieńkowski, S. et al. Kinetics of 14C-labelled sucrose, myo-inositol and phosphatidylcholine uptake during induction and differentiation in Brassica napus callus culture. Acta Physiol Plant 24, 11–17 (2002). https://doi.org/10.1007/s11738-002-0016-6

Download citation

Key words

  • Brassica napus
  • callus culture
  • myo-inositol
  • phosphatidylcholine
  • oilseed rape
  • regeneration ability
  • sucrose
  • uptake rate