Skip to main content

Changes in the composition of fatty acids and sterols of membrane lipids during induction and differentiation of Brassica napus (var. oleifera L.) callus

Abstract

Changes in the membrane lipid and sterols content and composition were studied during induction and differentiation in callus cultures of Brassica napus var. oleifera. Callus induction was associated with an increase of DGDG content, significant changes in fatty acids composition of all lipid fractions and increased degree of lipid unsaturation. The membrane lipid composition of tissue at different degrees of differentiation was found to vary significantly, particularly two weeks after transfer of callus to regeneration medium. The main differences concerned the content and composition of galactolipids. Curiously in many cases, these differences declined during subsequent culture, in spite of the morphogenesis process which was in progress. Another result of differentiation was the change in free sterol composition: in shoot regenerating calli the content of stigmasterol had rose whereas the accumulation of campesterol decreased. Even though observed changes in membrane properties may not play a role in morphogenesis they are nevertheless useful as developmental markers and can be invaluable in understanding biochemical basis of morphogenesis.

This is a preview of subscription content, access via your institution.

Abbreviations

16:0:

palmitic acid

16:1:

palmitooleic acid

17:0:

margaric acid

18:0:

stearic acid

18:1:

oleic acid

18:2:

linoleic acid

18:3:

linolenic acid

18:3/18:2:

ratio of 18:3/18:2 fatty acids

BAP:

6-benzylaminopurine

BF3 :

boron trifluoride

2,4-D:

2,4-dichlorophenoxyacetic acid

DBI:

Double Bound Index = Σ (molar % fatty acid content·number of double bounds)/100

GA3 :

gibberellic acid

MGDG:

monogalactosyl diacylglycerol

DGDG:

digalactosyl diacylglycerol

MS:

basal Murashige and Skoog medium

PL:

phospholipids

PL/GL:

ratio of phospholipids to glycolipids

References

  1. Bhardwaj L., Merillon J.-M., Ramawat K. G. 1995. Changes in the composition of membrane lipids in relation to differentiation in Aegle marmelos callus cultures. Plant Cell, Tissue Organ Culture 42: 33–37.

    Article  CAS  Google Scholar 

  2. Bligh E.G., Dyer W. J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917.

    PubMed  CAS  Google Scholar 

  3. Brenac P., Sauvaire Y. 1996. Accumulation of sterols and steroidal sapogenins in developing fenugreek pods: possible biosynthesis in situ. Phytochemistry 41: 415–422.

    Article  CAS  Google Scholar 

  4. Caldwell C.L., Whitman C.E. 1987. Temperature-induced protein conformational changes in barley root plasma membrane-enriched microsomes. Plant Physiol. 84: 918–923.

    PubMed  CAS  Article  Google Scholar 

  5. Cunha A., Ferreira M.F. 1997. Differences in free sterols content and composition associated with somatic embryogenesis, shoot organogenesis and calli growth of flax. Plant Science 124: 97–105.

    Article  CAS  Google Scholar 

  6. Douce R., Joyard J. 1980. Plant galactolipids. In: The Biochemistry of Plants, Vol.4, Lipids: Structure and Function, ed. by P. K. Stumpf, Academic Press, New York: 321–362.

    Google Scholar 

  7. Duxbury C. L., Legge R. L., Paliyath G., Barber R. F., Thompson J. E. 1991. Alternations in membrane protein conformation in response to senescence-related changes. Phytochemistry 30: 63–68.

    Article  CAS  Google Scholar 

  8. Flosh J., Lees M., Sloaney-Stanley G. H. 1957. A simple method for the isolation and purification of total lipids from animal tissue. J. Biol. Chem. 226: 497–509.

    Google Scholar 

  9. Grunwald C. 1975. Plant sterols. Ann. Rev. Plant Physiol. 26: 209–236.

    Article  CAS  Google Scholar 

  10. Hartmann M. A., Normand G., Benveniste P. 1975. Sterol composition of plasma membrane enriched-fractions from maize coleoptiles. Plant Sci. Lett. 5: 287–292.

    Article  CAS  Google Scholar 

  11. Kuiper P. J. C. 1985. Environmental changes and lipid metabolism of higher plants. Physiol. Plant. 64: 118–122.

    Article  CAS  Google Scholar 

  12. Manoharan K., Prasad R., Guha-Mukherjee S. 1987. Greening and shoot-differentiation related lipid changes in callus cultures of Datura innoxia. Phytochemistry 26: 407–410.

    Article  CAS  Google Scholar 

  13. Mills G. L., Lane P. A., Weech P. K. 1989. A guidebook to lipoprotein technique. R.H. Burdon, P.H. Van Knippenberg, Elsevier Sci. Pub., Amsterdam, New York, Oxford.

    Google Scholar 

  14. Moore T. S. 1982. Phospholipid biosynthesis. Ann. Rev. Plant Physiol. 33: 235–259.

    Article  CAS  Google Scholar 

  15. Murashige T., Skoog F. 1962. A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol. Plant. 15: 473–497.

    Article  CAS  Google Scholar 

  16. Rivera C. M., Penner D. 1978. Rapid changes in soybean root membrane lipids with altered temperature. Phytochemistry 17: 1269–1272.

    Article  CAS  Google Scholar 

  17. Ryyppö A., Vapaavuori E. M., Rikala R., Sutinen M.-L. 1994. Fatty acid composition of microsomal phospholipids and H+-ATPase activity in the roots of Scots pine seedlings grown at different root temperatures during flushing. J. Exp. Bot. 45: 1533–1539.

    Article  Google Scholar 

  18. Tattrie N. H., Veliky I. A. 1973. Fatty acid composition of lipids in various plant cell cultures. Can. J. Bot. 51: 513–516.

    CAS  Google Scholar 

  19. Van Blitterswijk W. J., van Hoeven R. P., van der Meer B. W. 1981. Lipid structural order parameters (reciprocal fluidity) in biomembranes derived from steady-state fluorescence polarization measurements. Biochim. Biophys. Acta 644: 323–332.

    PubMed  Article  Google Scholar 

  20. Williams M., Francis D., Hann A. C., Harwood J. L. 1991. Changes in lipid composition during callus differentiation in cultures of oilseed rape (Brassica napus L.). J. Exp. Bot. 42: 1551–1556.

    Article  CAS  Google Scholar 

  21. Wilson K. J., Stillwell W., Maxam T., Baldrige T. 1991. Membrane fluidity changes in embryogenic and non-embryogenic cultures of Asclepias and Daucus in response to auxin removal. Physiol. Plant. 82: 633–639.

    Article  CAS  Google Scholar 

  22. Yoshida S., Uemura M. 1984. Protein and lipid composition of isolated plasma membranes from orchard grass (Dactylis glomerata L.) and changes during cold acclimation. Plant Physiol. 75: 31–37.

    PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Iwona Żur.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Żur, I., Skoczowski, A., Niemczyk, E. et al. Changes in the composition of fatty acids and sterols of membrane lipids during induction and differentiation of Brassica napus (var. oleifera L.) callus. Acta Physiol Plant 24, 3–10 (2002). https://doi.org/10.1007/s11738-002-0015-7

Download citation

Key words

  • Brassica napus
  • callus
  • fatty acid composition
  • galactolipids
  • phospholipids
  • oilseed rape
  • regeneration ability
  • sterols