Skip to main content
Log in

Changes in antioxidant levels in Oryza sativa L. roots subjected to NaCl-salinity stress

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Imposition of NaCl-salinity stress induced oxidative reactions in root tissue of rice seedlings. A uniform accumulation of proline was marked with the increasing NaCl concentrations. Both peroxide content and lipid peroxidation level (MDA) increased with the salt treatment from the control. CAT, GPx and SOD activities decreased with the increasing NaCl concentrations suggesting a possible oxidative damage to root tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alia, Prasad K.V.S.K., Pardha Saradhi P. 1995. Effect of zinc on free radical and proline in Brassica juncea and Cajanus cajan. Phytochemistry. 39: 45–47.

    Article  CAS  Google Scholar 

  • Alia, Pardha Saradhi, P., Mohanty P. 1997. Involvement of proline in protecting thylakoid membrane against free radical induced photodamage. J. Photochem. Photobiol. B. Biol. 38: 253–257.

    Article  CAS  Google Scholar 

  • Alscher R.G. 1989. Biosynthesis and antioxidant function of glutathione in plants. Physiol. Plant. 77: 457–471.

    Article  CAS  Google Scholar 

  • Alscher R.G., Donahue J.L., Cramer C.L. 1998. Reactive oxygen species and antioxidants: Relationships in green cells. Physiol. Plant. 100: 224–233.

    Article  Google Scholar 

  • Asada K. 1994. Production and action of active oxygen species in photosynthetic tissues. In: Foyer C.H., Mulleaux P.M. (Eds.). Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants. CRC Press, Boca Raton, Fla., 77–103.

    Google Scholar 

  • Bates L.S., Waldren R.P., Teare I.D. 1973. Rapid determination of free proline for water stress studies. Plant Soil. 39: 205–207.

    Article  CAS  Google Scholar 

  • Bhattacharjee S., Mukherjee A.K. 1997. Role of free radical in membrane deterioration in three rice (Oryza sativa L.) cultivars under NaCl-salinity at early germination stage. Ind. J. Exp. Biol. 35: 1365–1369.

    CAS  Google Scholar 

  • Chance B., Maehly A.C. 1955. Assay of catalases and peroxidases. Methods Enzymol. 2: 764–775.

    Article  Google Scholar 

  • Dash M., Panda S.K. 2000. Salt stress induced changes in growth and enzyme activities in germinating Phaseolus mungo seeds. Biol. Plant. 44: 587–589.

    Article  Google Scholar 

  • Durgaprsad K.M.R., Muthukumarasamy M., Paneerselvam R. 1996. Changes in protein metabolism induced by salinity in soybean seedlings. Ind. J. Plant Physiol. 1: 98–101.

    Google Scholar 

  • Elstner E.F. 1982. Oxygen activation and toxicity. Annu. Rev. Plant Physol. 33: 73–96.

    Article  CAS  Google Scholar 

  • Giannapolitis C.N., Ries S.K. 1977. Superoxide dismutase. I. Occurance in higher plants. Plant Physiol. 59: 309–314.

    Google Scholar 

  • Gosset D.R., Banks S.W., Millholon E.P., Lucas C. 1996. Antioxidant response to NaCl stress in control and an NaCl-tolerant cotton line grown in the presence of paraquat, buthionine sulfoximine and exogenous glutathione. Plan Physiol. 112: 803–809.

    CAS  Google Scholar 

  • Griffith O.W. 1980. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine Anal. Biochem. 106: 207–211.

    CAS  Google Scholar 

  • Grover A., Pareek A., Singla S.L., Minhas D., Katiyar S., Ghawana S., Dubey H., Agarwal M., Rao G.U., Rathee J., Grover A. 1998. Engineering crops for tolerance against abiotic stresses through gene manipulation. Curr. Sci. 75: 689–696.

    Google Scholar 

  • Halliwell B., Gutteridge J.M.C. 1985. Free Radicals in Biology and Medicine. Clarendon Press. Oxford. pp. 1–51.

    Google Scholar 

  • Heath R. L., Packer L. 1968. Photoperoxidation in isolated chloroplasts. I Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125: 189–198.

    Article  PubMed  CAS  Google Scholar 

  • Hernandez J. A., Olmos E., Capras F.J., Sevilla F., Del Rio L.A. 1995. Salt-induced oxidative stress in chloroplast of pea plants. Plant Sci. 105: 151–167.

    Article  CAS  Google Scholar 

  • Hernandez J.A., del Rio L.A., Sevilla F. 1994. Salt-stress induced changes in superoxide dismutase isozymes in leaves and mesophyll protoplasts from Vigna unguiculata (L.) Walp. New Phytol. 126: 37–44.

    Article  CAS  Google Scholar 

  • Maslenkova L.T., Miteva T.S., Popova L.P. 1992. Changes in polypeptide patterns of barley seedlings exposed to jasmonic acid and salinity. Plant Physiol. 98: 700–707.

    PubMed  CAS  Google Scholar 

  • Oser B.L. 1979. Hawks Physiological Chemistry. McGraw Hill. NY. USA. pp. 702–705.

    Google Scholar 

  • Prasad K.V.S.K., PardhaSaradhi P., Sharmila P. 1999. Concerted action of antioxidant enzymes and curtailed growth under zinc toxicity in Brassica juncea, Env. & Exptl. Bot. 42: 1–19.

    Article  CAS  Google Scholar 

  • Rennenberg H. 1982. Glutathione metabolism and possible biological roles in higher plants. Phytochemistry. 21: 2771–2812.

    Article  CAS  Google Scholar 

  • Sagisaka S. 1976. The occurence of peroxide in a perennial plant Populus gelrica. Plant Physiol. 57: 308–309.

    Article  PubMed  CAS  Google Scholar 

  • Saha K., Gupta K. 1998. Effect of NaCl salinity on ethylene production and metabolism in sunflower seedling. Ind. J. Plant Physiol. 2: 127–130.

    Google Scholar 

  • Shalata A., Tal M. 1998. The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennelli. Physiol. Plant. 104: 169–174.

    Article  CAS  Google Scholar 

  • Yoshiba Y., Kioyoshue T., Katagiri T., Ueda H., Mizoguchi T., Yamaguchi-Shinozaki K.K., Wada K., Harada Y., Shonozaki K. 1995. Correlation between the induction of a gene for pyrolline 5-carboxylate synthase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J. 7: 751–760.

    Article  PubMed  CAS  Google Scholar 

  • Zhao S., Blumwald E. 1998. Changes in oxidation reduction state and antioxidatant enzymes in the roots of jack pine seedlings during cold acclimation. Physiol. Plant. 104: 134–142.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, M.H., Singha, K.L.B. & Panda, S.K. Changes in antioxidant levels in Oryza sativa L. roots subjected to NaCl-salinity stress. Acta Physiol Plant 24, 145–148 (2002). https://doi.org/10.1007/s11738-002-0004-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-002-0004-x

Key words

Navigation