Skip to main content
Log in

Purification and characteristics of glutamate dehydrogenase (GDH) from triticale roots

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

In the investigated 14 day old triticale seedlings a much higher GDH activity was observed in roots than in leaves. The enzyme from the roots was purified up to the state of homogeneity (about 400 fold). The purified enzyme showed a higher activity in the presence of reduced coenzyme forms (NAD(P)H) than their oxidated forms. In the presence of NAD(P)H the enzyme showed absolute specificity to 2-oxoglutarate and in cooperation with NAD(P)+ to L-glutamate. The Km values determined for particular substrates indicate a high affinity of NADPH-GDH to ammonium ions.

Optimum pH, temperature and thermostability of GDH depended on the type and form of the coenzyme. Molecular mass of purified enzyme was 257 kDa. It seems that native GDH is composed of six identical subunits of the molecular mass 42.5 kDa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alekhina N.D., Klyuikova A.J., Gerasimova S. 1984. Adaptative responses in glutamine synthetase and glutamate dehydrogenase from the roots of winter wheat seedlings grown at a various temperature. Fiziol. Rast. 31: 344–350.

    CAS  Google Scholar 

  • Barash I., Sadn T., Mor H. 1973. Induction of a specific isoenzyme of glutamate dehydrogenase by ammonia in oat leaves. Nature New. Biol., 244: 150–152.

    Article  PubMed  CAS  Google Scholar 

  • Becker T.W., Carrayol E., Hirel B. 2000. Glutamine synthetase and glutamate dehydrogenase isoforms in maize leaves: localization, relative proportion and their role in ammonium assimilation or nitrogen transport. Planta, 211: 800–806.

    Article  PubMed  CAS  Google Scholar 

  • Bielawski W., Rafalski A. 1979. Glutamate dehydrogenase and glutamine synthetase in rye seedlings supplied with ammonium and nitrate. Acta Biochem. Pol. 26: 383–396.

    CAS  Google Scholar 

  • Bielawski W., Kwinta J., Kączkowski J. 1989. Comparison of some cereal seedlings on the ability of glutamine synthetase induction. Acta Physiol. Plant. 11: 147–156.

    CAS  Google Scholar 

  • Bielawski W. 1994. Effect of some compounds on glutamine synthetase isoforms activity from Triticale seedling leaves. Acta Physiol. Plant. 15: 211–218.

    Google Scholar 

  • Czosnowski J. 1974. Metabolism of excised embrios of Lupinus luteus L VI. An electrophoretic analysis of some dehydrogenases in cultured as compared with the normal seedling axes. Acta Soc. Bot. Pol. 43: 117–127.

    CAS  Google Scholar 

  • Fereira R., Davies D. 1989. Nitrogen supply and light intensity on properties of glutamate dehydrogenase and glycolate oxidase in Lemna. Phytochemistry 28: 349–354.

    Article  Google Scholar 

  • Garcia R.N., Mendoza E.M.T., Menancio-Hautea D.I., Robles R.P. 1994. Kinetic properties and variation in activity levels of root nodule ammonia and carbon assimilation enzymes in mung bean, Vigna radiata L. Wilczek. Philip. J. Crop. Sci. 19: 11–18.

    Google Scholar 

  • Gulati A., Jaiwal J.K., 1996. Effect of NaCl on nitrate reductase, glutamate dehydrogenase and glutamate synthase in Vigna radiata calli. Biol. Plant. 38: 177–183.

    CAS  Google Scholar 

  • Heeschen V., Gerendas J., Richter C.P., Rudolph H. 1997. Glutamate dehydrogenase of Sphagnum. Phytochemistry 45: 881–887.

    Article  CAS  Google Scholar 

  • Inokuchi R., Itagaki T., Wiskich J.T., Nakayama K., Okada M. 1997. An NADP-glutamate dehydrogenase from green alga Bryopsis maxima. Purification and properties. Plant Cell Physiol. 38: 372–335.

    Google Scholar 

  • Itagaki T., Dry I.B., Wiskich J. 1988. Purification and properties of NAD-glutamate dehydrogenase from turnip mitochondria. Phytochemistry. 27: 3373–3378.

    Article  CAS  Google Scholar 

  • Kumar R.G., Shah K., Dubey R.S. 2000. Salinity induced behavioural changes in malate dehydrogenase and glutamate dehydrogenase activities in rice seedlings of differing salt tolerance. Plant Sci. 156: 23–34.

    Article  PubMed  CAS  Google Scholar 

  • Kumar S., Ma B., Tsai Chung-Jung, Nussinov R. 2000. Electrostatic strengths of salt bridges in thermophilic and mesophilic glutamate dehydrogenase monomers. Proteins: Structure, Function and Genetics 38: 368–383.

    Google Scholar 

  • Kwinta J., Bartoszewicz K., Bielawski W. 1999. Glutamate dehydrogenase and glutamate synthetase activities during development of Triticale grains. Acta Physiol. Plant., 21: 271–275.

    CAS  Google Scholar 

  • Kwinta J., Bielawski W. 1998. Glutamate dehydrogenase in higher plants. Acta Phys. Plant. 20: 453–463.

    Article  CAS  Google Scholar 

  • Laemmli U.K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Lewis O., James D.M., Hewitt E.J. 1982. Nitrogen assimilation in barley (Hordeum vulgare L. cv. Mazurka) in response to nitrate and ammonium nutrition. Ann. Bot. 49: 39–49.

    CAS  Google Scholar 

  • Lineweaver M., Burk D.J. 1934. The determination of enzyme dissociation constans. J. Am. Chem. Soc., 56: 658–666.

    Article  CAS  Google Scholar 

  • Loulakakis K.A., Roubelakis-Angelakis K.A. 1990. Intracellular localization and properties of NADH-glutamate dehydrogenase from Vitis vinifera L.: Purification and characterization of the major leaf isoenzyme. J. Exp. Bot. 41: 1223- 1230.

    Article  CAS  Google Scholar 

  • Loulakakis K.A., Roubelakis-Angelakis K.A. 1991. Plant NADH-glutamate dehydrogenase consist of two subunit polipeptides and their participation in the seven isoenzymes occurs in an ordered ratio. Plant. Physiol. 97: 104–111.

    PubMed  CAS  Google Scholar 

  • Loulakakis K.A., Roubelakis-Angelakis K.A. 1996. The seven NADH-glutamate dehydrogenase izoenzymes exhibit similar anabolic and katabolic activities. Physiol. Plant. 96: 29–35.

    Article  CAS  Google Scholar 

  • Lowry H.O., Rosebrough N.J., Farr A.L., Randall R.J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275.

    PubMed  CAS  Google Scholar 

  • Loyola-Vargas V.M., Yanez A., Caldera J., Oropeza C., Quiroz R.M.L., Scorer K.N. 1988. Nitrogen metabolism in Canavalia ensiformis (L.) D.C.II. Changing activities of nitrogen-assimilating enzymes during growth. J. Plant Physiol. 132: 289–293.

    CAS  Google Scholar 

  • Moller J.M., Rasmuson A.G. 1998. The role of NADP in themitochondrial matrix. Trends Plant Sci. 3: 21–27.

    Article  Google Scholar 

  • Oaks A. 1995. Evidence for deamination by glutamate dehydrogenase in higher plants- reply. Can. J. Bot. 73: 1116–1117.

    CAS  Google Scholar 

  • O’Farell P.Z., Goodman H.M., O’Farell P.H. 1977. High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell, 12: 1133–1142.

    Article  Google Scholar 

  • O’Neal D., Joy K.W. 1973 b. Glutamine synthetase of pea leaves. I. Purification and pH optima. Arch. Biochem. Biophys. 159: 113–122.

    Article  PubMed  CAS  Google Scholar 

  • Orzechowski S., Kwinta J., Gworek B., Bielawski W. 1997. Biochemical indicators of environmental contaminations with heavy metals. Pol. J. Env. Studies. 6: 29–32.

    Google Scholar 

  • Robinson S.A., Stewart G.R., Phillips R. 1992. Regulation of glutamate dehydrogenase in relation to carbon limitation and protein catabolism in carrot cell suspension cultures. Plant Physiol. 98: 1190–1195.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava H.S., Singh R.P. 1987. Role and regulation of L-glutamate dehydrogenase activity in higher plants. Phytochemistry 26: 597–610.

    Article  CAS  Google Scholar 

  • Syntichaki K.M., Loulakakis K.A., Ruobelakis-Angelakis K.A. 1996. The amino acid sequence similarity of plant glutamate dehydrogenase to the extermophilic archaeal enzyme conforms to its stress-related function. Gene 168: 87–92.

    Article  PubMed  CAS  Google Scholar 

  • Turano F.J., Dashner R., Upadhyaya A., Caldwell C.R. 1996. Purification of mitochondrial glutamate dehydrogenase from dark-grown soybean seedlings. Plant. Physiol. 112: 1357–1364.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwinta, J., Bartoszewicz, K. & Bielawski, W. Purification and characteristics of glutamate dehydrogenase (GDH) from triticale roots. Acta Physiol Plant 23, 399–405 (2001). https://doi.org/10.1007/s11738-001-0049-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-001-0049-2

Key words

Navigation