Skip to main content
Log in

Putrescine influences growth and production of coumarins in transformed and untransformed root cultures of witloof chicory (Cichorium intybus L. cv. Lucknow local)

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The effect of putrescine on growth and production of two coumarins, esculin, and esculetin in the transformed and untransformed roots of chicory (Cichorium intybus L. cv. Lucknow local) was examined. To study the role of putrescine (Put) on growth and production of coumarins, polyamine inhibitors namely α-DL-difluromethylornithine (DFMO) and α-L-difluromethylarginine (DFMA) were used at 1 mM levels. Treatment with 1.5 mM of putrescine (Put) produced 1.96 - fold and 4.0 - fold increase in the growth of transformed and untransformed roots of chicory, respectively. The treatment with polyamine inhibitors showed much lower growth, as well as production compared with both 1.5 mM putrescine treatment and control in both transformed and untransformed chicory roots. The endogenous polyamines, both free and conjugated, were studied over the whole culture period, and it was seen that conjugated titers of all three polyamines viz., putrescine, spermidine and spermine were higher than level of free polyamines, throughout the culture period in both transformed and untransformed roots of chicory. Treatment in which polyamine inhibitors were used showed lower level of endogenous polyamines as compared with the 1.5 mM putrescine treated sample in both the systems. The treatment wherein putrescine was added at 1.5 mM level showed maximum accumulation of endogenous conjugated putrescine (2098.86±157.6 nmoles g−1 FW; 896.8±67.2 nmoles·g−1 FW), on the 14th day in both transformed and untransformed roots respectively. The production of esculin and esculetin was strictly correlated with growth in every treatment in both systems. Putrescine at 1.5 mM resulted in greater length of primary root in transformed (18.3±1.4 cm) and untransformed (6.86±0.51 cm) as compared with their respective controls (11±0.9 cm; 2.9±0.1cm) and greater number of secondary and tertiary roots. This study suggests that putrescine influences plant root development and differentiation, and it also provides insight into the morphological changes that occur in roots in response to the external supply of polyamines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PAs:

polyamines

Put:

putrescine

Spd:

spermidine

Spm:

spermine

PCA:

perchloric acid

ODC:

Ornithinedecarboxylase

ADC:

Argininedecarboxylase

HPLC:

high performance liquid-chromatography

DFMO:

α-DL- Difluromethylornithine

DFMA:

α-DL-Difluoromethylarginine

References

  • Bagni N., Serafini-Fracassini D. 1985. Involvement of polyamines in the mechanism of break of dormancy in Helianthus tuberosus. Bull. Soc. Bot. France., 132: 119–125.

    Google Scholar 

  • Bais H.P., George J., Ravishankar G.A. 1999. Influence of polyamines on growth of hairy root cultures of witloof chicory (Cichorium intybus L.cv. Lucknow local) and formation of coumarins. J. Plant. Growth. Regul., 18: 33–37.

    Article  PubMed  CAS  Google Scholar 

  • Bais H.P., Venkatesh R.T., Chandrashekar A., Ravishankar G.A. 2001. Agrobacterium rhizogenes-mediated transformation of Witloof Chicory, in vitro shoot regeneration and iduction of flowering. Current Sci., 80: 83–87.

    Google Scholar 

  • Berta G., Altamura M.M., Fusconi A., Cerruti F., Capitanni F., Bagni N. 1997. The plant cell wall is altered by inhibition of polyamine biosynthesis. New. Phytol., 137: 569–577.

    Article  CAS  Google Scholar 

  • Chriqui D., D’Orazi D., Bagni N. 1986. Ornithine and arginine decarboxylases and polyamine involvement during in vivo differentiation of Datura innoxia leaf explant. Physiol. Plant., 68: 589–596.

    Article  CAS  Google Scholar 

  • Cohen E., Arad S., Heimer Y., Mizrahi Y. 1986. Participation of ornithine- decarboxylase in early stages of tomato fruit development. Plant. Physiol., 70:540–543.

    Google Scholar 

  • Dellaporta S.L., Wood J., Hicks J.B., 1983. A Plant DNA minipreparation version II. Plant Mol. Biol. Rep., 1, 19–21.

    CAS  Google Scholar 

  • Evans P.T., Malmberg R.L. 1989. Do polyamines have a role in plant development? Ann. Rev. Plant. Physiol. Mol. Biol., 40: 235–269.

    CAS  Google Scholar 

  • Fierer R., Mignan G., Litvay J. 1984. Arginine decarboxylase and polyamines required for embryogenesis in wild carrot. Science. 223: 1433–1435.

    Article  Google Scholar 

  • Flores H.E., Galston A.W. 1982. Analysis of polyamines in higher plants by HPLC. Plant. Physiol., 69: 701–706.

    PubMed  CAS  Google Scholar 

  • Flores H.E., 1990. Polyamines and plant stress in Alscler R.G., Cummy J.R., Allen N.S., (eds) Stress responses in plant adaptation and acclimation mechanism. Wiley Liss, Wiley Sons Inc., Publ. NY, pp 217–239.

  • Gallardo M., Bueno M., Angosto T., Gallardo E., Mattila A.G. 1992. Free polyamines in Cicer arietienum seeds during the onset of germination. Phytochem., 31: 2283–2287.

    Article  CAS  Google Scholar 

  • Galston A.W., Kaur Sawhney R., 1990. Polyamines in plant physiology. Plant. Physiol., 94: 406–410.

    PubMed  CAS  Google Scholar 

  • Gerats A.G.M., Keye C., Collins C., Malmberg R.L., 1988. Polyamine level in Petunia genotypes with normal and abnormal floral morphologies. Plant. Physiol., 86: 390–393.

    PubMed  CAS  Google Scholar 

  • Hamill J.D., Rounsley S., Spencer A., Todd G., Rhodes M.J.C., 1991. The use of polymerase chain reaction in plant transformation studies. Plant. Cell. Rep., 10, 221–224.

    Article  CAS  Google Scholar 

  • Hiatt A.C., Malmberg R.L. 1988. Utilization of putrescine in tobacco cell lines resistant to inhibitor of polyamine biosynthesis. Plant. Physiol., 86:441–446.

    PubMed  CAS  Google Scholar 

  • Huang H., Villeneuva R.V. 1992. Inhibition of polyamine biosynthesis and seed germination in Picea abies. Phytochem., 31: 3353–3356.

    Article  Google Scholar 

  • Jarvis B.C., Yasmin S., Coleman M.T., 1985. RNA and protein metabolism during adventitious root formation in stem cuttings of P. mungo cultivar berkin. Physiol. Plant, 64: 53–59.

    Article  CAS  Google Scholar 

  • Kallio A., MacCann P.P. 1981. Difluromethylornithine irreversibly inactivates ornithine decarboxylase of Pseudomonas aeruginosa, but does not inhibit the enzymes of Escherichia coli. Biochem. J., 200:69–75.

    PubMed  CAS  Google Scholar 

  • Kaur-Sawhney R., Shihi L., Galston A.W. 1982. Relation of polyamine biosynthesis in the initiation of sprouting in potato tubers. Plant. Physiol., 69: 411–415.

    PubMed  CAS  Google Scholar 

  • Kulpa J.M., Galsky A.G., Lipetz P., Stephens R. 1985. Polyamines and crown gall tumour growth. Plant. Cell. Rep., 4: 81–83.

    Article  CAS  Google Scholar 

  • Murashige M., Skoog T. 1962. A revised medium for rapid growth and bioassay of tobacco tissue cultures. Physiol. Plant., 15: 473–497.

    Article  CAS  Google Scholar 

  • Montague M., Armstrong T., Jaworski E., 1979. Polyamine metabolism in embryogenic cells of D. carota and change in ADC activity. Plant. Physiol., 63: 341–348.

    PubMed  CAS  Google Scholar 

  • Sevon’ N., Oksmann-Caldenty K.M., Hiltunan R., 1995. Efficient plant regeneration from hairy root derived protoplasts of Hyoscyamus muticus. Plant. Cell. Rep., 14, 738–742.

    CAS  Google Scholar 

  • Sevon’ N., Drager B., Hiltunan R., Oksmann-Caldenty KM., 1997. Characterization of transgenic plants derived from hairy roots of Hyoscyamus muticus. Plant. Cell. Rep., 16, 605–611.

    CAS  Google Scholar 

  • Slocum R.D., Galston A.W. 1985. Changes in polyamines associated with post fertilization and development in tobacco ovary tissues. Plant. Physiol., 79: 336–343.

    PubMed  CAS  Google Scholar 

  • Smith TA., 1990. Plant Polyamines metabolism and function In: Flores H.E., Arteea R.N., Shannon J.C., (eds) Polyamines and ethylene: Biochemistry, Physiology and interaction. Am Soc Plant Physiologists Maryland pp 1–23.

  • Tamma R.V., Miller G.C. 1985. High performance level chromatographic analysis of coumarin and flavonoids from sections of Tridentatae of Artemisia. J. Chrom., 322: 236–239.

    Article  CAS  Google Scholar 

  • Tanguy J.M., Martin C., Paynot M., Rossini N. 1988. Effect of hormone treatment on growth and bud formation and free amine and hydroxylcinnamoyl putrescine levels in leaf explant of Nicotiana tabacum cultured in vitro. Plant. Physiol., 88: 600–604.

    Google Scholar 

  • Tanguy J.M., Tepfer D., Paynot M., Burtin D., Heister L., Martin C. 1990. Inverse relationship between polyamine level and the degree of phenotypic alteration induced by root inducing left hand T-DNA from Agrobacterium rhizogenes. Plant. Physiol., 92: 912–918.

    Article  Google Scholar 

  • Tiburcio A.F., Kaur-Sawhney R., Galston A.W. 1987. Effect of polyamine biosynthetic inhibitor on alkaloid and organogenesis in tobacco callus cultures. Plant. Cell. Tissue. Organ. Cult., 9:111–120.

    Article  PubMed  CAS  Google Scholar 

  • Torrigiani P., Altamura M.M., Pasqua G., Monecelli B., Serafini Fracassini D., Bagni N., 1987. Free and conjugated polyamines in floral bud formation in thin cell layers of tobacco. Physiol. Plant., 70: 453–460.

    Article  CAS  Google Scholar 

  • Verveliet G., Holsters M., Teuchy H., Van Montagu M., Schell J. 1975. Characteristics of different plaque forming and defective temperate phages in Agrobacterium strains. J. Gen. Virol., 26:33–48.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Ravishankar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bais, H.P., Sudha, G. & Ravishankar, G.A. Putrescine influences growth and production of coumarins in transformed and untransformed root cultures of witloof chicory (Cichorium intybus L. cv. Lucknow local). Acta Physiol Plant 23, 319–327 (2001). https://doi.org/10.1007/s11738-001-0039-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-001-0039-4

Key words

Navigation