Skip to main content
Log in

Peroxidase involvement in the defense response of red raspberry to Didymella applanata (Niessl/Sacc.)

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Peroxidase activity of red raspberry canes was dependent on the cultivar and influenced the subsequent lignification. After inoculation with Didymella applanata, responsible for the spur blight cane disease, the activity of soluble cytoplasmic enzyme increased in the moderately resistant ‘Latham’ and susceptible ‘Malling Promise’, similarly for syringaldazine and guaiacol as hydrogen donors. Systemic induction found in ‘Latham’ was recognized as a symptom of defence mechanism responsible for fungal restriction. Locally enhanced peroxidase activity in the ‘M.Promise’ tissues was related to the local lignification and/or may be associated with the loss of cell integrity caused by pathogen penetration. Pathogen-induced changes of cell wall peroxidases were similar in both cultivars mentioned above. No influence of the infection was found in the high susceptible Zeva cultivar.

Using native-PAGE analysis and horizontal starch electrophoresis of soluble fraction five constitutive acidic isoperoxidases were detected in ‘Latham’ and three in ‘M. Promise’. The infection process was accompanied by the appearance of two new anodic isoforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker C.J., Orlandi E.W. 1995. Active oxygen in plant pathogenesis. Annu. Rev. Phytopathol., 33: 298–321.

    Article  Google Scholar 

  • Bowles D.J. 1990. Defense-related proteins in higher plants. Annu. Rev. Biochem., 59: 873–907.

    Article  PubMed  CAS  Google Scholar 

  • Bradley D.J., Kjellbom P., Lamb C.J. 1992. Elicitor and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell 70:21–30

    Article  PubMed  CAS  Google Scholar 

  • Cassab G.I., Varner J.E. 1988. Cell wall proteins. Annu. Rev. Plant Physiol. Plant Mol. Biol., 39: 321–353.

    Article  CAS  Google Scholar 

  • Christensen J.H., Bauw G., Van Montagu M., Boerjan W. 1996. Towards the identification of lignin specific peroxidases in poplar. In: Plant Peroxidases: Biochemistry and Physiology. Ed. C. Obinger, U. Burner, R. Ebermann, C. Penel, H. Greppin, Univ. Geneva: 113–117.

    Google Scholar 

  • Dalton D. A. 1995. Antioxidant defenses of plant and fungi. In: Oxidant — Induced Stress and Antioxidant Defenses. S. Ahmad Ed. Chapman & Hall, New York: 298–355.

    Google Scholar 

  • de Marco A., Guzzardi P., Jamet E. 1999. Isolation of tobacco isoperoxidases acumulated in cell-suspension culture medium and characterization of activities related to cell wall metabolism. Plant Physiol. 120:371–381.

    Article  PubMed  Google Scholar 

  • Durner J., Klessig D.F. 1995. Inhibition of ascorbate peroxidase by salicylic acid and 2,6-dichloroisonicotinic acid, two inducers of plant defense responses. Proc. Natl. Acad. Sci., 92: 11312–11316.

    Article  PubMed  CAS  Google Scholar 

  • Elstner E.F., Heupel A.L. 1976. Formation of hydrogen peroxide by isolated cell walls from horseradish (Armoracia lapathifolia Gilib.). Planta 130: 175–180.

    Article  CAS  Google Scholar 

  • Gaspar T., Penel C., Thorpe T., Greppin H., 1982. Peroxidases 1970–1980. A survey of Their Biochemical and Physiological Roles in Higher Plants. Univ. Geneva, Switzerland.

    Google Scholar 

  • Gazaryan I.G., Lagrimini L.M., Ashby G.A., Thorneley R.N.F. 1996. The mechanism of indole-3-acetic acid oxidation by plant peroxidases: anaerobic stopped-flow spectrophotometric studies on horseradish and tobacco peroxidases. Biochem. J., 313: 841–847.

    PubMed  CAS  Google Scholar 

  • Gottlieb L.D. 1973. Enzyme differentiation and phylogeny in Clarkia franciscana, C. Rubicanda and C. Amoena. Evolution, 27: 205–214.

    Article  Google Scholar 

  • Gwozdecki J., Radaczyńska Z., Rechnio H., Sikora J., Smolarz K. 1983. Ocean malin w różnych rejonach Polski. Prace Inst. Sad. Kwiac., 24: 77–89.

    Google Scholar 

  • Hammerschmidt R., Nucles E.M., Kuć J. 1982. Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiol. Plant Pathol., 20: 73–82.

    Article  CAS  Google Scholar 

  • Imberty A., Goldberg R., Catesson A.M. 1985. Isolation and characterization of Populus isoperoxidase involved in the last step of lignin formation. Planta 164: 221–226.

    Article  CAS  Google Scholar 

  • Kozłowska M. 1993. Activity of β-D-glucosidase and syringaldazine oxidase and susceptibility of red raspberry canes to Didymella applanata (Niessl/Sacc.). Phytopath. Pol., 6: 7–12.

    Google Scholar 

  • Kozłowska M. 1994. Phenolic composition of red raspberry canes in relation to Didymella applanata (Niessl/Sacc.) response. Acta Physiol. Plant., 16: 211–215.

    Google Scholar 

  • Kozłowska M. 1995. Histopathological response to Didymella applanata (Niessl/Sacc.) infection. Phytopathol. Pol., 9: 65–71.

    Google Scholar 

  • Kozłowska M., Floryszak-Wieczorek J. 1995. Generation of oxygen radicals of red raspberry canes in response to Didymella applanata (Niessl/Sacc.) infection. In: Environmental biotic factors in integrated plant disease control. Ed. M. Mańka, Poznań: 331–335.

  • Kozłowska M., Krzywański Z. 1991. Lignification in red raspberry canes upon wounding and fungal infection. Acta Physiol. Plant., 13: 115–121.

    Google Scholar 

  • Kozłowska M., Krzywański Z. 1994. The possible role of phenolic compounds in red raspberry resistance to Didymella applanata (Niessl/Sacc.). Acta Hort., 381: 671–674.

    Google Scholar 

  • Krzywański Z., Kozłowska M. 1986. Formy peroksydazy w zdrowych i zainfekowanych prezez Didymella applanata (Niessl/Sacc.) pędach maliny. PTPN, Prace Kom. Nauk Roln. i Kom. Nauk Leśn., 61: 121–130.

    Google Scholar 

  • Lagrimini L.M., Rothstein S. 1987. Tissue specificity of tobacco peroxidase isozymes and their induction by wounding and tobacco mosaic virus infection. Plant Physiol., 84: 438–442.

    Article  PubMed  CAS  Google Scholar 

  • Lamb C., Dixon R.A. 1997. The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol., 48: 251–275.

    Article  PubMed  CAS  Google Scholar 

  • Lee T. M., Lin Y.H. 1995. Chances in soluble and cell wall-bound peroxidase activities with growth in anoxiatreated rice (Oryza sativa L.) coleoptiles and roots. Plant Science 106: 1–7.

    Article  CAS  Google Scholar 

  • Lewis N.G., Davin L.B. 1994. Evolution of lignan and neolignan biochemical pathways. In: WD Nes, ed. Isopentenoids and Other Natural Products: Evolution and Function. Symposium Series 562. Amer. Chem. Soc., Washington, DC: 202–246.

    Google Scholar 

  • Lewis N.G., Yamamoto E. 1990. Lignin: occurrence, biogenesis and biodegradation. Annu. Rev. Plant Physiol. Plant Mol. Biol., 41: 455–496.

    Article  PubMed  CAS  Google Scholar 

  • Li Z. C., McClury J.W., Hagerman A.E. 1989. Soluble and bound apoplastic activity for peroxidase, D-glucosidase, malate dehydrogenase, and nonspecific arylesterase, in barley (Hordeum vulgare L.) and oat (Avena sativa L.) primary lives. Plant Physiol. 90: 185–190.

    PubMed  CAS  Google Scholar 

  • Maranon M.J.R., van Huystee R.B. 1994. Plant peroxidases: interaction between their prosthetic groups. Phytochemistry 37: 1217–1225.

    Article  CAS  Google Scholar 

  • Mäder M., Amber-Fixher V. 1982. Role of peroxidase in lignification of tobacco cells. I. Oxidation of nicotinamide dinucleotide and formation of hydrogen peroxide by cell wall peroxidase. Plant Physiol., 70: 1128–1131.

    PubMed  Google Scholar 

  • Moerschbacher B.M. 1992. Plant peroxidases involvement in response to pathogen. In: Plant Peroxidases 1980–1990. Ed. C. Panel, Th. Gaspar, H. Greppin, Univ. Geneva: 91–99.

    Google Scholar 

  • Moerschbacher B.M., Flott B.E., Noll U., Reisener H.J. 1988. Lignin biosynthetic enzymes in stem rust infected resistant and susceptible near isogenic wheat lines. Physiol. Mol. Plant Pathol. 33: 33–46.

    Article  CAS  Google Scholar 

  • Nakano Y., Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol., 22: 867–880.

    CAS  Google Scholar 

  • Nose M., Bernards M.A., Furlan M., Zajicek J., Eberhardt T.L., Lewis N.G. 1995. Towards the specification of consecutive step in macromolecular lignin assembly. Phytochemistry 39: 71–79.

    Article  PubMed  CAS  Google Scholar 

  • Pang A., Catesson A.M., Francesch C., Rolando C., Goldberg R. 1989. On substrate specificity of peroxidases involved in the lignification proces. J. Plant Physiol., 135: 325–329.

    CAS  Google Scholar 

  • Treutter D., Schmid P.P.S., Feucht W. 1990. Wall-bound phenols and peroxidase activity in shoots of Prunus. II. Oxidation of ferulic acid by covalently bound peroxidases. Gartenbauwissenschaft 55:127–129.

    CAS  Google Scholar 

  • Walter M.H. 1992. Regulation of lignification in defense. In: Genes Involved in Plant Defense. T. Boller and F. Meins ed., Springer-Verlag, Wien.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozłowska, M., Fryder, K. & Wolko, B. Peroxidase involvement in the defense response of red raspberry to Didymella applanata (Niessl/Sacc.). Acta Physiol Plant 23, 303–310 (2001). https://doi.org/10.1007/s11738-001-0037-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-001-0037-6

Key words

Navigation