Skip to main content

Advertisement

Log in

Effects of acupuncture on SATB1/p21 signaling pathway and SASPs in MPTP-induced Parkinson disease model mice

针刺对MPTP诱导的帕金森病模型小鼠SATB1/p21信号通路和衰老相关分泌表型的影响

  • Basic Study
  • Published:
Journal of Acupuncture and Tuina Science Aims and scope Submit manuscript

Abstract

Objective

To observe the effects of acupuncture on the motor function of Parkinson disease (PD) model mice and to investigate the neuroprotective effects of acupuncture on PD from the perspective of cellular senescence.

Methods

C57BL/6J mice were randomly divided into a normal control (NC) group, a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) group, an acupuncture (ACU) group, and a rasagiline (RAS) group, with 6 mice in each group. Except for the mice in the NC group, all mice were injected intraperitoneally with MPTP [30 mg/(kg·bw)] to establish a PD mouse model. After the models were successfully established, mice in the ACU group received acupuncture at Baihui (GV20) and bilateral Yanglingquan (GB34) for 15 min, once a day for 14 consecutive days. Mice in the RAS group were treated with gavage of rasagiline mesylate [0.5 mg/(kg·bw)], once daily for 14 d. Mouse balance and motor functions were detected using the mouse fatigue rotating rod apparatus. Immunohistochemistry staining was used to detect the number of tyrosine hydroxylase (TH)-positive neurons and the protein expression levels of special AT-rich sequence-binding protein 1 (SATB1), p21, and p53 in the substantia nigra (SN) region of the mouse brain in each group. The glutathione peroxidase (GSH-Px) activity of mouse brain SN tissue was detected by enzyme-linked immunosorbent assay. The protein expression levels of interleukin (IL)-6 and senescence-associated β-galactosidase (SA-β-gal) in the SN tissue of mice in each group were detected by Western blotting. The relative expression of SATB1, p21, and p53 mRNA in the SN of each group was detected by real-time quantitative polymerase chain reaction.

Results

Compared with the NC group, the overall rod performance (ORP) score, the number of TH-positive neurons, and GSH-Px activity in the SN region were significantly lower in the mice in the MPTP group (P<0.01); compared with the MPTP group, the ORP score, the number of TH-positive neurons, and GSH-Px activity were significantly increased in the ACU and RAS groups (P<0.01 or P<0.05). Compared with the NC group, the protein levels of IL-6 and SA-β-gal in the SN tissue, the protein and mRNA expression levels of p21 and p53 were significantly increased (P<0.01); compared with the MPTP group, the protein levels of IL-6 and SA-β-gal in the SN tissue, the protein and mRNA expression levels of p21 and p53 were significantly decreased in the ACU group and the RAS group (P<0.01 or P<0.05). Compared with the NC group, the relative expression of SATB1 protein and mRNA in the SN of mice in the MPTP group was significantly decreased (P<0.01); compared with mice in the MPTP group, mice in the ACU and RAS groups showed significant increases in the relative expression of SATB1 protein and mRNA (P<0.01 or P<0.05).

Conclusion

Acupuncture can improve motor function and increase the number of TH-positive neurons in the SN of PD model mice. Its neuroprotective effect may relate to the regulation of the SATB1/p21 signaling pathway and the inhibition of cellular senescence-related biomarker expression in the SN.

摘要

目的

观察针刺对帕金森病(PD)模型小鼠运动功能的影响, 并从细胞衰老角度探究针刺对PD的神经保护 作用。

方法

将C57BL/6J小鼠随机分为正常(NC)组、1-甲基-4-苯基-1,2,3,6-四氢吡啶(MPTP)组、针刺(ACU)组和雷 沙吉兰(RAS)组, 每组6只。除正常组小鼠外, 其余各组小鼠腹腔注射MPTP[30 mg/(kg·bw)]构建PD小鼠模型。ACU 组小鼠予针刺百会和双侧阳陵泉, 每次15 min, 每日1次, 连续治疗14 d。雷沙吉兰组小鼠采用甲磺酸雷沙吉兰 [0.5 mg/(kg·bw)]进行灌胃治疗, 每日1次, 连续治疗14 d。采用疲劳转棒仪检测小鼠平衡和运动能力。采用免疫 组织化学染色法检测各组小鼠脑黑质部位TH阳性神经元数量和SATB1、p21、p53蛋白表达水平。采用酶联免疫 吸附法检测小鼠中脑黑质组织谷胱甘肽过氧化物酶(GSH-Px)活力。采用免疫印迹法检测各组小鼠脑黑质组织白 细胞介素(IL)-6、衰老相关β-半乳糖苷酶(SA-β-gal)蛋白表达水平。采用实时荧光定量逆转录聚合酶链式反应检 测各组小鼠中脑黑质组织AT富集序列特异性结合蛋白1(SATB1)、p21、p53 mRNA相对表达量。

结果

与NC组相 比, MPTP组小鼠转棒实验(ORP)评分、中脑黑质区域TH阳性神经元数量和GSH-Px活性显著降低(P<0.01); 与MPTP 组相比, ACU组和RAS组ORP评分、TH阳性神经元数量和GSH-Px活性显著增加(P<0.01或P<0.05)。与NC组相比, MPTP组小鼠中脑黑质IL-6和SA-β-gal蛋白、p21与p53的蛋白及mRNA表达水平显著增加(P<0.01); 与MPTP组相比, ACU组和RAS组小鼠中脑黑质IL-6和SA-β-gal蛋白、p21与p53的蛋白及mRNA表达水平显著降低(P<0.01或 P<0.05)。与NC组相比, MPTP组小鼠中脑黑质SATB1蛋白和mRNA相对表达量显著降低(P<0.01); 与MPTP组小鼠相 比, ACU组和RAS组小鼠SATB1蛋白和mRNA相对表达量显著增加(P<0.01或P<0.05)。

结论

针刺可以改善PD模型小 鼠运动功能, 增加黑质部位TH阳性神经元数量。针刺对PD小鼠的神经保护作用可能与调节SATB1/p21信号通路, 抑制黑质细胞衰老相关生物标志物表达有关。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GONERA E G, VAN’T HOF M, BERGER H J, VAN WEEL C, HORSTINK M W. Symptoms and duration of the prodromal phase in Parkinson’s disease. Mov Disord, 1997, 12(6): 871–876.

    Article  PubMed  CAS  Google Scholar 

  2. MCDONALD C, GORDON G, HAND A, WALKER R W, FISHER J M. 200 Years of Parkinson’s disease: what have we learnt from James Parkinson?. Age Ageing, 2018, 47(2): 209–214.

    Article  PubMed  Google Scholar 

  3. SIMON D K, TANNER C M, BRUNDIN P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin Geriatr Med, 2020, 36(1): 1–12.

    Article  PubMed  Google Scholar 

  4. LEITE SILVA A B R, GONÇALVES DE OLIVEIRA R W, DIÓGENES G P, DE CASTRO AGUIAR M F, SALLEM C C, LIMA M P P, DE ALBUQUERQUE FILHO L B, PEIXOTO DE MEDEIROS S D, PENIDO DE MENDONÇA L L, DE SANTIAGO FILHO P C, NONES D P, DA SILVA CARDOSO P M M, RIBAS M Z, GALVÃO S L, GOMES G F, BEZERRA DE MENEZES A R, DOS SANTOS N L, MORORÓ V M, DUARTE F S, DOS SANTOS J C C. Premotor, nonmotor and motor symptoms of Parkinson’s disease: a new clinical state of the art. Ageing Res Rev, 2023, 84: 101834.

    Article  PubMed  CAS  Google Scholar 

  5. DIEDERICH N J, MOORE C G, LEURGANS S E, CHMURA T A, GOETZ C G. Parkinson disease with old-age onset: a comparative study with subjects with middle-age onset. Arch Neuro, 2003, 60(4): 529–533.

    Article  Google Scholar 

  6. BIGAGLI E, LUCERI C, SCARTABELLI T, DOLARA P, CASAMENTI F, PELLEGRINI-GIAMPIETRO D E, GIOVANNELLI L. Long-term neuroglial cocultures as a brain aging model: hallmarks of senescence, microRNA expression profiles, and comparison with in vivo models. J Gerontol A Biol Sci Med Sci, 2016, 71(1): 50–60.

    Article  PubMed  CAS  Google Scholar 

  7. EARLS R H, MENEES K B, CHUNG J, BARBER J, GUTEKUNST C A, HAZIM M G, LEE J K. Intrastriatal injection of preformed alpha-synuclein fibrils alters central and peripheral immune cell profiles in non-transgenic mice. J Neuroinflammation, 2019, 16(1): 250.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. BRAAK H, DEL TREDICI K, RÜB U, DE VOS R A, JANSEN STEUR E N, BRAAK E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging, 2003, 24(2): 197–211.

    Article  PubMed  Google Scholar 

  9. HO D H, SEOL W, SON I. Upregulation of the p53-p21 pathway by G2019S LRRK2 contributes to the cellular senescence and accumulation of α-synuclein. Cell Cycle, 2019, 18(4): 467–475.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. PARK M H, LEE H J, LEE H L, SON D J, JU J H, HYUN B K, JUNG S H, SONG J K, LEE D H, HWANG C J, HAN S B, KIM S, HONG J T. Parkin knockout inhibits neuronal development via regulation of proteasomal degradation of p21. Theranostics, 2017, 7(7): 2033–2045.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. KUMAR P P, BISCHOF O, PURBEY P K, NOTANI D, URLAUB H, DEJEAN A, GALANDE S. Functional interaction between PML and SATB1 regulates chromatin-loop architecture and transcription of the MHC class I locus. Nat Cell Biol, 2007, 9(1): 45–56.

    Article  PubMed  Google Scholar 

  12. BAKER D J, PETERSEN R C. Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives. J Clin Invest, 2018, 128(4): 1208–1216.

    Article  PubMed  PubMed Central  Google Scholar 

  13. BRICHTA L, SHIN W, JACKSON-LEWIS V, BLESA J, YAP E L, WALKER Z, ZHANG J, ROUSSARIE J P, ALVAREZ M J, CALIFANO A, PRZEDBORSKI S, GREENGARD P. Identification of neurodegenerative factors using translatome-regulatory network analysis. Nat Neurosci, 2015, 18(9): 1325–1333.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. RIESSLAND M, KOLISNYK B, KIM T W, CHENG J, NI J, PEARSON J A, PARK E J, DAM K, ACEHAN D, RAMOS-ESPIRITU L S, WANG W, ZHANG J, SHIM J, CICERI G, BRICHTA L, STUDER L, GREENGARD P. Loss of SATB1 induces p21-dependent cellular senescence in post-mitotic dopaminergic neurons. Cell stem cell, 2019, 25(4): 514–530.e8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. DEUEL L M, SEEBERGER L C. Complementary therapies in Parkinson disease: a review of acupuncture, Tai Chi, Qi Gong, yoga, and cannabis. Neurotherapeutics, 2020, 17(4): 1434–1455.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. FAN J Q, LU W J, TAN W Q, LIU X, WANG Y T, WANG N B, ZHUANG L X. Effectiveness of acupuncture for anxiety among patients with Parkinson disease. JAMA Netw Open, 2022, 5(9): e2232133.

    Article  PubMed  PubMed Central  Google Scholar 

  17. LI K S, XU S F, WANG R P, ZOU X, LIU H R, FAN C H, LI J, LI G N, WU Y W, MA X P, CHEN Y Y, HU C F, LIU X R, YUAN C X, YE Q, DAI M, WU L Y, WANG Z Q, WU H G. Electroacupuncture for motor dysfunction and constipation in patients with Parkinson’s disease: a randomised controlled multi-centre trial. eClinicalMedicine, 2023, 56: 101814.

    Article  PubMed  PubMed Central  Google Scholar 

  18. LI L H, JIN X Q, CONG W J, DU T T, ZHANG W. Acupuncture in the treatment of Parkinson’s disease with sleep disorders and dose response. BioMed Res Int, 2022, 2022: 7403627.

    PubMed  PubMed Central  Google Scholar 

  19. XIAO Y Z, LI K S, CHEN Z Y, SHEN L, CHEN Y Y, LU J, XIE J, LI J X, WANG W J, LI L J, QIAO Y, LI J. Effects of acupuncture and moxibustion on PINK1/Parkin signaling pathway in substantia nigra of Thy1-αSyn transgenic mice with Parkinson disease. J Acupunct Tuina Sci, 2023, 21(6): 427–436.

    Article  Google Scholar 

  20. ZUO T T, XIE M, YAN M L, ZHANG Z Y, TIAN T, ZHU Y, WANG L H, SUN Y H. In situ analysis of acupuncture protecting dopaminergic neurons from lipid peroxidative damage in mice of Parkinson’s disease. Cell Prolif, 2022, 55(4): e13213.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. WANG Q, WANG Y, LIU Z B, GUO J, LI J, ZHAO Y Q. Improvement effect of acupuncture on locomotor function in Parkinson disease via regulating gut microbiota and inhibiting inflammatory factor release. J Acupunct Tuina Sci, 2022, 20(1): 339–353.

    Article  Google Scholar 

  22. JACKSON-LEWIS V, PRZEDBORSKI S. Protocol for the MPTP mouse model of Parkinson’s disease. Nat Protoc, 2007, 2(1): 141–151.

    Article  PubMed  CAS  Google Scholar 

  23. SUN Z L, JIA J, GONG X L, JIA Y J, DENG J H, WANG X, WANG X M. Inhibition of glutamate and acetylcholine release in behavioral improvement induced by electroacupuncture in Parkinsonian rats. Neurosci Lett, 2012, 520(1): 32–37.

    Article  PubMed  CAS  Google Scholar 

  24. KWON S, SEO B K, KIM S. Acupuncture points for treating Parkinson’s disease based on animal studies. Chin J Integr Med, 2016, 22(10): 723–727.

    Article  PubMed  Google Scholar 

  25. ROZAS G, GUERRA M J, LABANDEIRA-GARCÍA J L. An automated rotarod method for quantitative drug-free evaluation of overall motor deficits in rat models of parkinsonism. Brain Res Brain Res Protoc, 1997, 2(1): 75–84.

    Article  PubMed  CAS  Google Scholar 

  26. CARRENO G, GUIHO R, MARTINEZ-BARBERA J P. Cell senescence in neuropathology: a focus on neurodegeneration and tumours. Neuropathol Appl Neurobiol, 2021, 47(3): 359–378.

    Article  PubMed  PubMed Central  Google Scholar 

  27. SI Z Z, SUN L L, WANG X D. Evidence and perspectives of cell senescence in neurodegenerative diseases. Biomed Pharmacother, 2021, 137: 111327.

    Article  PubMed  CAS  Google Scholar 

  28. TOLOSA E, GARRIDO A, SCHOLZ S W, POEWE W. Challenges in the diagnosis of Parkinson’s disease. Lancet Neurol, 2021, 20(5): 385–397.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. TITOVA N, CHAUDHURI K R. Non-motor Parkinson disease: new concepts and personalised management. Med J Aust, 2018, 208(9): 404–409.

    Article  PubMed  Google Scholar 

  30. ZESIEWICZ T A. Parkinson disease. Continuum (Minneap Minn), 2019, 25(4): 896–918.

    PubMed  Google Scholar 

  31. JANKOVIC J, TAN E K. Parkinson’s disease: etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry, 2020, 91(8): 795–808.

    Article  PubMed  Google Scholar 

  32. RAY CHAUDHURI K, POEWE W, BROOKS D. Motor and nonmotor complications of levodopa: phenomenology, risk factors, and imaging features. Mov Disord, 2018, 33(6): 909–919.

    Article  PubMed  CAS  Google Scholar 

  33. LI F, HE T, XU Q, LIN L T, LI H, LIU Y, SHI G X, LIU C Z. What is the acupoint? A preliminary review of acupoints. Pain Med, 2015, 16(10): 1905–1915.

    Article  PubMed  Google Scholar 

  34. KAPTCHUK T J. Acupuncture: theory, efficacy, and practice. Ann Intern Med, 2002, 136(5): 374–383.

    Article  PubMed  Google Scholar 

  35. CAO L J, LI X X, LI M X, YAO L, HOU L Y, ZHANG W Y, WANG Y F, NIU J Q, YANG K H. The effectiveness of acupuncture for Parkinson’s disease: an overview of systematic reviews. Complement Ther Med, 2020, 50: 102383.

    Article  PubMed  Google Scholar 

  36. LIU P, YU X Y, DAI X H, ZOU W, YU X P, NIU M M, CHEN Q X, TENG W, KONG Y, GUAN R Q, LIU X Y. Scalp acupuncture attenuates brain damage after intracerebral hemorrhage through enhanced mitophagy and reduced apoptosis in rats. Front Aging Neurosci, 2021, 13: 718631.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. ZHAO Y D, ZHANG Z C, QIN S R, FAN W, LI W, LIU J Y, WANG S T, XU Z F, ZHAO M D. Acupuncture for Parkinson’s disease: efficacy evaluation and mechanisms in the dopaminergic neural circuit. Neural Plast, 2021, 2021: 9926445.

    Article  PubMed  PubMed Central  Google Scholar 

  38. LAI F, JIANG R, XIE W J, LIU X R, TANG Y, XIAO H, GAO J Y, JIA Y, BAI Q H. Intestinal pathology and gut microbiota alterations in a methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease. Neurochem Res, 2018, 43(10): 1986–1999.

    Article  PubMed  CAS  Google Scholar 

  39. DIONÍSIO P A, AMARAL J D, RODRIGUES C M P. Oxidative stress and regulated cell death in Parkinson’s disease. Ageing Res Rev, 2021, 67: 101263.

    Article  PubMed  Google Scholar 

  40. SUN C P, ZHOU J J, YU Z L, HUO X K, ZHANG J, MORISSEAU C, HAMMOCK B D, MA X C. Kurarinone alleviated Parkinson’s disease via stabilization of epoxyeicosatrienoic acids in animal model. Proc Natl Acad Sci U S A, 2022, 119(9): e2118818119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. ODA W, FUJITA Y, BABA K, MOCHIZUKI H, NIWA H, YAMASHITA T. Inhibition of repulsive guidance molecule-a protects dopaminergic neurons in a mouse model of Parkinson’s disease. Cell Death Dis, 2021, 12(2): 181.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. KIRKLAND J L, TCHKONIA T. Cellular senescence: a translational perspective. EBioMedicine, 2017, 21: 21–28.

    Article  PubMed  PubMed Central  Google Scholar 

  43. BIRCH J, GIL J. Senescence and the SASP: many therapeutic avenues. Genes Dev, 2020, 34(23–24): 1565–1576.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. SOTO-GAMEZ A, DEMARIA M. Therapeutic interventions for aging: the case of cellular senescence. Drug Discov Today, 2017, 22(5): 786–795.

    Article  PubMed  CAS  Google Scholar 

  45. VAN DEURSEN J M. The role of senescent cells in ageing. Nature, 2014, 509(7501): 439–446.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. SHEN Q Q, JU X H, MA X Z, LI C, LIU L, JIA W T, QU L, CHEN L L, XIE J X. Cell senescence induced by toxic interaction between α-synuclein and iron precedes nigral dopaminergic neuron loss in a mouse model of Parkinson’s disease. Acta Pharmaco Sin, 2024, 45(2): 268–281.

    Article  CAS  Google Scholar 

  47. LEE H J, YOON Y S, LEE S J. Molecular mechanisms of cellular senescence in neurodegenerative diseases. J Mol Biol, 2023, 435(12): 168114.

    Article  PubMed  CAS  Google Scholar 

  48. VERMA D K, SEO B A, GHOSH A, MA S X, HERNANDEZ-QUIJADA K, ANDERSEN J K, KO H S, KIM Y H. Alpha-synuclein preformed fibrils induce cellular senescence in Parkinson’s disease models. Cells, 2021, 10(7): 1694.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. CHINTA S J, WOODS G, DEMARIA M, RANE A, ZOU Y, MCQUADE A, RAJAGOPALAN S, LIMBAD C, MADDEN D T, CAMPISI J, ANDERSEN J K. Cellular senescence is induced by the environmental neurotoxin paraquat and contributes to neuropathology linked to Parkinson’s disease. Cell Rep, 2018, 22(4): 930–940.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. MUÑOZ-ESPÍN D, SERRANO M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol, 2014, 15(7): 482–496.

    Article  PubMed  Google Scholar 

  51. WEI L, YANG X W, WANG J, WANG Z X, WANG Q G, DING Y, YU A Q. H3K18 lactylation of senescent microglia potentiates brain aging and Alzheimer’s disease through the NFκB signaling pathway. J Neuroinflammation, 2023, 20(1): 208.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. SALECH F, SANMARTÍN C D, CONCHA-CERDA J, ROMERO-HERNÁNDEZ E, PONCE D P, LIABEUF G, ROGERS N K, MURGAS P, BRUNA B, MORE J, BEHRENS M I. Senescence markers in peripheral blood mononuclear cells in amnestic mild cognitive impairment and Alzheimer’s disease. Int J Mol Sci, 2022, 23(16): 9387.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. HOUSER M C, CHANG J, FACTOR S A, MOLHO E S, ZABETIAN C P, HILL-BURNS E M, PAYAMI H, HERTZBERG V S, TANSEY M G. Stool immune profiles evince gastrointestinal inflammation in Parkinson’s disease. Mov Disord, 2018, 33(5): 793–804.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. LIU T W, CHEN C M, CHANG K H. Biomarker of neuroinflammation in Parkinson’s disease. Int J Mol Sci, 2022, 23(8): 4148.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. GOIRAN T, DUPLAN E, ROULAND L, EL MANAA W, LAURITZEN I, DUNYS J, YOU H, CHECLER F, ALVES DA COSTA C. Nuclear p53-mediated repression of autophagy involves PINK1 transcriptional down-regulation. Cell Death Differ, 2018, 25(5): 873–884.

    PubMed  PubMed Central  Google Scholar 

  56. WOLFRUM P, FIETZ A, SCHNICHELS S, HURST J. The function of p53 and its role in Alzheimer’s and Parkinson’s disease compared to age-related macular degeneration. Front Neurosci, 2022, 16: 1029473.

    Article  PubMed  PubMed Central  Google Scholar 

  57. MOGI M, KONDO T, MIZUNO Y, NAGATSU T. p53 protein, interferon-gamma, and NF-kappaB levels are elevated in the parkinsonian brain. Neurosci Lett, 2007, 414(1): 94–97.

    Article  PubMed  CAS  Google Scholar 

  58. BJØRKLUND G, PEANA M, MAES M, DADAR M, SEVERIN B. The glutathione system in Parkinson’s disease and its progression. Neurosci Biobehav Rev, 2021, 120: 470–478.

    Article  PubMed  Google Scholar 

  59. TAN F C C, HUTCHISON E R, EITAN E, MATTSON M P. Are there roles for brain cell senescence in aging and neurodegenerative disorders?. Biogerontology, 2014, 15(6): 643–660.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by High Level Traditional Chinese Medicine Key Subjects of the State Administration of Traditional Chinese Medicine (国家中 医药管理局高水平中医药重点学科建设项目, No. zyyzdxk-2023068); Project of National Natural Science Foundation of China (国家自然科学基金项目, No. 82205260); Shanghai Pudong New Area Health System Famous Traditional Chinese Medicine Training Program (上海市浦东新区卫计委名中医培养计划, No. PWRzm2020-12); Discipline Construction of Pudong New Area Health Commission Acupuncture and Moxibustion Key Specialty of Traditional Chinese Medicine (浦东新区 卫计委学科建设中医针灸重点专科, No. PWZzk2022-25).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling Cheng  (程玲) or Yu Qiao  (乔宇).

Ethics declarations

There is no potential conflict of interest in this article.

Additional information

Statement of Human and Animal Rights

This experiment passed the ethical review of experimental animals in Yueyang Hospital of Integrative Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine (Ethical Approval No. YYLAC-2020-070-1). The treatment of animals in this experiment conformed to the ethical criteria.

Co-first Authors: LI Guona, M.M., physician; WANG Zhaoqin, M.D., associate professor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Zhao, C., Wang, Z. et al. Effects of acupuncture on SATB1/p21 signaling pathway and SASPs in MPTP-induced Parkinson disease model mice. J. Acupunct. Tuina. Sci. (2024). https://doi.org/10.1007/s11726-024-1426-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11726-024-1426-4

Keywords

关键词

中图分类号

文献标志码

Navigation