Skip to main content
Log in

Study on the regulatory effect of herbal cake-partitioned moxibustion on colonic CD206, AMPK and TSC2 in rats with Crohn disease

隔药灸对克罗恩病大鼠结肠CD206, AMPK和TSC2的调节作用研究

  • Basic Study
  • Published:
Journal of Acupuncture and Tuina Science Aims and scope Submit manuscript

Abstract

Objective

To explore the mechanism of herbal cake-partitioned moxibustion in Crohn disease (CD) treatment by observing the effect of herbal cake-partitioned moxibustion on protein expressions of colonic M2 macrophage marker CD206, AMP-activated protein kinase (AMPK) and tuberous sclerosis complex (TSC) 2.

Methods

Twenty-six specific pathogen free male rats were randomly divided into a normal group, a model group and a herbal cake-partitioned moxibustion group. The CD model was prepared by enema with the mixture of 5% (W/V) 2,4,6-trinitrobenzene sulfonic acid (TNBS) and 50% ethanol at 2:1 (volume ratio). After the model was successfully prepared, rats in the herbal cake-partitioned moxibustion group received herbal cake-partitioned moxibustion at Qihai (CV 6) and bilateral Tianshu (ST 25). Hematoxylin-eosin (HE) staining was used to observe the histopathological changes of rat colon; immunohistochemical technique was used to detect the expression of colonic CD206 protein; Western blot, immunofluorescence, and real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) technologies were used to detect the protein and mRNA expressions of colonic AMPK and TSC2.

Results

Compared with the normal group, rats in the model group showed damaged colonic mucosa, missing of the epithelial layer, thickened submucosa, vascular proliferation, massive infiltration of monocytes and lymphocytes, and cracked ulcers that reached the muscle layer. Rats in the herbal cake-partitioned moxibustion group showed reduced intestinal inflammation and healing intestinal epithelium ulcers. Compared with the normal group, rat colonic CD206 protein expression, and the protein and mRNA expressions of colonic AMPK and TSC2 were decreased in the model group (all P<0.01); compared with the model group, rat colonic CD206 protein expression was increased (P<0.01), as well as the protein and mRNA expressions of AMPK and TSC2 in the herbal cake-partitioned moxibustion (all P<0.05).

Conclusion

Herbal cake-partitioned moxibustion can reduce intestinal inflammation in CD rats, increase colonic CD206 protein expression, and up-regulate the protein and mRNA expressions of colonic AMPK and TSC2.

摘要

目的

观察隔药灸对克罗恩病(CD)大鼠结肠M2型巨噬细胞标志物CD206, 腺苷酸活化蛋白激酶(AMPK)和结节 硬化复合物(TSC) 2蛋白表达的影响, 探讨隔药灸治疗CD的作用机制。

方法

将26只无特定病原体级雄性大鼠随机分 为正常组, 模型组和隔药灸组。采用5%(W/V) 2,4,6-三硝基苯磺酸(TNBS)与50%乙醇按2:1(体积比)混合后灌肠, 制备 CD模型。模型制备成功后, 隔药灸组取气海及双侧天枢进行隔药灸。采用苏木素-伊红(HE)染色观察大鼠结肠组织病 理学变化; 应用免疫组化技术检测结肠CD206蛋白表达; 应用免疫印迹, 免疫荧光和实时荧光定量聚合酶链反应 (RT-qPCR)技术检测结肠AMPK, TSC2蛋白和mRNA表达。

结果

与正常组比较, 模型组大鼠结肠黏膜受损, 上皮层缺失, 黏膜下层增厚, 血管增生, 单核细胞和淋巴细胞大量浸润, 出现深达肌层的裂隙状溃疡; 隔药灸组大鼠肠道炎症减轻, 肠上皮可见愈合性溃疡。与正常组比较, 模型组大鼠结肠CD206蛋白, AMPK和TSC2蛋白及mRNA表达均降低 (均P<0.01); 与模型组比较, 隔药灸组大鼠结肠CD206蛋白表达增高(P<0.01), AMPK, TSC2蛋白及mRNA表达 均升高(均P<0.05)。

结论

隔药灸能减轻CD大鼠肠道炎症, 提高结肠CD206 蛋白表达, 上调结肠AMPK, TSC2 蛋白及 mRNA表达。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Torres J, Mehandru S, Colombel JF, Peyrin-Biroulet L. Crohn’s disease. Lancet, 2017, 389(10080): 1741–1755.

    Article  Google Scholar 

  2. Thia KT, Sandborn WJ, Harmsen WS, Zinsmeister AR, Loftus EVJr. Risk factors associated with progression to intestinal complications of Crohn’s disease in a population-based cohort. Gastroenterology, 2010, 139(4): 1147–1155.

    Article  Google Scholar 

  3. Eglinton TW, Barclay ML, Gearry RB, Frizelle FA. The spectrum of perianal Crohn’s disease in a population-based cohort. Dis Colon Rectum, 2012, 55(7): 773–777.

    Article  Google Scholar 

  4. Molodecky NA, Soon IS, Rabi DM, Ghali WA, Ferris M, Chernoff G, Benchimol EI, Panaccione R, Ghosh S, Barkema HW, Kaplan GG. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology, 2012, 142(1): 46–54.

    Article  Google Scholar 

  5. Ng SC, Tang W, Ching JY, Wong M, Chow CM, Hui AJ, Wong TC, Leung VK, Tsang SW, Yu HH, Li MF, Ng KK, Kamm MA, Studd C, Bell S, Leong R, de Silva HJ, Kasturiratne A, Mufeena MNF, Ling KL, Ooi CJ, Tan PS, Ong D, Goh KL, Hilmi I, Pisespongsa P, Manatsathit S, Rerknimitr R, Aniwan S, Wang YF, Ouyang Q, Zeng Z, Zhu Z, Chen MH, Hu PJ, Wu K, Wang X, Simadibrata M, Abdullah M, Wu JC, Sung JJY, Chan FKL; Asia-Pacific Crohn’s and Colitis Epidemiologic Study (ACCESS) Study Group. Incidence and phenotype of inflammatory bowel disease based on results from the Asia-Pacific Crohn’s and colitis epidemiology study. Gastroenterology, 2013, 145(1): 158–165.

    Article  Google Scholar 

  6. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol, 2008, 8(12): 958–969.

    Article  CAS  Google Scholar 

  7. Zhang F, Xiong SD. The polarization of macrophages and its significance. Xibao Shengwuxue Zazhi, 2007, 29: 27–30.

    Google Scholar 

  8. Liu JN, Wang XY, Sun Y. Research progress on the effects of macrophage polarization in inflammatory disease. Shengwu Huagong, 2020, 6(1): 112–115.

    Google Scholar 

  9. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol, 2004, 25(12): 677–686.

    Article  CAS  Google Scholar 

  10. Zhu W, Yu J, Nie Y, Shi X, Liu Y, Li F, Zhang XL. Disequilibrium of M1 and M2 macrophages correlates with the development of experimental inflammatory bowel diseases. Immunol Invest, 2014, 43(7): 638–652.

    Article  CAS  Google Scholar 

  11. Koelink PJ, Bloemendaal FM, Li B, Westera L, Vogels EWM, van Roest M, Gloudemans AK, van’t Wout AB, Korf H, Vermeire S, Te Velde AA, Ponsioen CY, D’Haens GR, Verbeek JS, Geiger TL, Wildenberg ME, van den Brink GR. Anti-TNF therapy in IBD exerts its therapeutic effect through macrophage IL-10 signalling. Gut, 2020, 69(6): 1053–1063.

    Article  CAS  Google Scholar 

  12. Qing L, Fu J, Wu P, Zhou Z, Yu F, Tang J. Metformin induces the M2 macrophage polarization to accelerate the wound healing via regulating AMPK/mTOR/NLRP3 inflammasome signaling pathway. Am J Transl Res, 2019, 11(2): 655–668.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Yin H, Zhao L, Li S, Xu L, Wang Y, Chen H. Impaired cellular energy metabolism contributes to duck-enteritis-virus-induced autophagy via the AMPK-TSC2-MTOR signaling pathway. Front Cell Infect Microbiol, 2017, 7: 423.

    Article  Google Scholar 

  14. Ministry of Science and Technology of the People’s Republic of China. Guiding Opinions on the Treatment of Experimental Animals (2006-09-30) [2017-06-20]. http://www.most.gov.cn/fggw/zfwj/zfwj2006/200609/t20060930_54389.htm.

  15. Xu RF, Yin QH. Completely random section grouping method with unequal number of cases in each group. Zhongguo Weisheng Tongji, 1993, 10(5): 45–46.

    Google Scholar 

  16. Morris GP, Beck PL, Herridge MS, Depew WT, Szewczuk MR, Wallace JL. Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology, 1989, 96(3): 795–803.

    Article  CAS  Google Scholar 

  17. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 2001, 25(4): 402–408.

    Article  CAS  Google Scholar 

  18. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, Lee JC, Schumm LP, Sharma Y, Anderson CA, Essers J, Mitrovic M, Ning K, Cleynen I, Theatre E, Spain SL, Raychaudhuri S, Goyette P, Wei Z, Abraham C, Achkar JP, Ahmad T, Amininejad L, Ananthakrishnan AN, Andersen V, Andrews JM, Baidoo L, Balschun T, Bampton PA, Bitton A, Boucher G, Brand S, Büning C, Cohain A, Cichon S, D’Amato M, De Jong D, Devaney KL, Dubinsky M, Edwards C, Ellinghaus D, Ferguson LR, Franchimont D, Fransen K, Gearry R, Georges M, Gieger C, Glas J, Haritunians T, Hart A, Hawkey C, Hedl M, Hu X, Karlsen TH, Kupcinskas L, Kugathasan S, Latiano A, Laukens D, Lawrance IC, Lees CW, Louis E, Mahy G, Mansfield J, Morgan AR, Mowat C, Newman W, Palmieri O, Ponsioen CY, Potocnik U, Prescott NJ, Regueiro M, Rotter JI, Russell RK, Sanderson JD, Sans M, Satsangi J, Schreiber S, Simms LA, Sventoraityte J, Targan SR, Taylor KD, Tremelling M, Verspaget HW, De Vos M, Wijmenga C, Wilson DC, Winkelmann J, Xavier RJ, Zeissig S, Zhang B, Zhang CK, Zhao H; International IBD Genetics Consortium (IIBDGC); Silverberg MS, Annese V, Hakonarson H, Brant SR, Radford-Smith G, Mathew CG, Rioux JD, Schadt EE, Daly MJ, Franke A, Parkes M, Vermeire S, Barrett JC, Cho JH. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature, 2012, 491(7422): 119–124.

    Article  CAS  Google Scholar 

  19. Zeissig S, Bürgel N, Günzel D, Richter J, Mankertz J, Wahnschaffe U, Kroesen AJ, Zeitz M, Fromm M, Schulzke JD. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut, 2007, 56(1): 61–72.

    Article  CAS  Google Scholar 

  20. Shah SC, Colombel JF, Sands BE, Narula N. Systematic review with meta-analysis: mucosal healing is associated with improved long-term outcomes in Crohn’s disease. Aliment Pharmacol Ther, 2016, 43(3): 317–333.

    Article  CAS  Google Scholar 

  21. Seow CH, Benchimol EI, Griffiths AM, Otley AR, Steinhart AH. Budesonide for induction of remission in Crohn’s disease. Cochrane Database Syst Rev, 2008, (3): CD000296.

  22. Deepak P, Sifuentes H, Sherid M, Stobaugh D, Sadozai Y, Ehrenpreis ED. T-cell non-Hodgkin’s lymphomas reported to the FDA AERS with tumor necrosis factor-alpha (TNF-α) inhibitors: results of the REFURBISH study. Am J Gastroenterol, 2013, 108(1): 99–105.

    Article  CAS  Google Scholar 

  23. Peyrin-Biroulet L, Loftus EVJr, Colombel JF, Sandborn WJ. The natural history of adult Crohn’s disease in population-based cohorts. Am J Gastroenterol, 2010, 105(2): 289–297.

    Article  Google Scholar 

  24. Wu LJ, Li XY, Yang YT, Yang L, Shi Z, Zhao CY, Wu HG, Li ZY, Zhang D, Ma XP. Study on the regulation effect of herb-partitioned moxibustion on colonic p38MAPK, ERK1/2 and c-fos in CD rats. Shijie Kexue Jishu: Zhongyiyao Xiandaihua, 2019, 21(8): 1583–1589.

    Google Scholar 

  25. Kühl AA, Erben U, Kredel LI, Siegmund B. Diversity of intestinal macrophages in inflammatory bowel diseases. Front Immunol, 2015, 6: 613.

    Article  Google Scholar 

  26. Seyedizade SS, Afshari K, Bayat S, Rahmani F, Momtaz S, Rezaei N, Abdolghaffari AH. Current status of M1 and M2 macrophages pathway as drug targets for inflammatory bowel disease. Arch Immunol Ther Exp (Warsz), 2020, 68(2): 10.

    Article  Google Scholar 

  27. Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep, 2014, 6: 13.

    Article  Google Scholar 

  28. Song WJ, Li Q, Ryu MO, Ahn JO, Bhang DH, Jung YC, Youn HY. TSG-6 released from intraperitoneally injected canine adipose tissue-derived mesenchymal stem cells ameliorate inflammatory bowel disease by inducing M2 macrophage switch in mice. Stem Cell Res Ther, 2018, 9(1): 91.

    Article  CAS  Google Scholar 

  29. Yang R, Liao Y, Wang L, He P, Hu Y, Yuan D, Wu Z, Sun X. Exosomes derived from M2b macrophages attenuate DSS-induced colitis. Front Immunol, 2019, 10: 2346.

    Article  CAS  Google Scholar 

  30. Viollet B, Guigas B, Leclerc J, Hébrard S, Lantier L, Mounier R, Andreelli F, Foretz M. AMP-activated protein kinase in the regulation of hepatic energy metabolism: from physiology to therapeutic perspectives. Acta Physiol (Oxf), 2009, 196(1): 81–98.

    Article  CAS  Google Scholar 

  31. Hardie DG, Schaffer BE, Brunet A. AMPK: an energy-sensing pathway with multiple inputs and outputs. Trends Cell Biol, 2016, 26(3): 190–201.

    Article  CAS  Google Scholar 

  32. Sun X, Yang Q, Rogers CJ, Du M, Zhu MJ. AMPK improves gut epithelial differentiation and barrier function via regulating Cdx2 expression. Cell Death Differ, 2017, 24(5): 819–831.

    Article  CAS  Google Scholar 

  33. Deng J, Zeng L, Lai X, Li J, Liu L, Lin Q, Chen Y. Metformin protects against intestinal barrier dysfunction via AMPKa1-dependent inhibition of JNK signalling activation. J Cell Mol Med, 2018, 22(1): 546–557.

    Article  CAS  Google Scholar 

  34. Wang Y, Huang Y, Xu Y, Ruan W, Wang H, Zhang Y, Saavedra JM, Zhang L, Huang Z, Pang T. A dual AMPK/Nrf2 activator reduces brain inflammation after stroke by enhancing microglia M2 polarization. Antioxid Redox Signal, 2018, 28(2): 141–163.

    Article  CAS  Google Scholar 

  35. Garami A, Zwartkruis FJ, Nobukuni T, Joaquin M, Roccio M, Stocker H, Kozma SC, Hafen E, Bos JL, Thomas G. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell, 2003, 11(6): 1457–1466.

    Article  CAS  Google Scholar 

  36. Yamagata K, Sanders LK, Kaufmann WE, Yee W, Barnes CA, Nathans D, Worley PF. Rheb, a growth factor- and synaptic activity-regulated gene, encodes a novel ras-related protein. J Biol Chem, 1994, 269(23): 16333–16339.

    Article  CAS  Google Scholar 

  37. Kumase F, Takeuchi K, Morizane Y, Suzuki J, Matsumoto H, Kataoka K, Al-Moujahed A, Maidana DE, Miller JW, Vavvas DG. AMPK-activated protein kinase suppresses Ccr2 expression by inhibiting the NF-κB pathway in RAW264.7 macrophages. PLoS One, 2016, 11(1): e0147279.

    Article  Google Scholar 

  38. Cosin-Roger J, Simmen S, Melhem H, Atrott K, Frey-Wagner I, Hausmann M, de Vallière C, Spalinger MR, Spielmann P, Wenger RH, Zeitz J, Vavricka SR, Rogler G, Ruiz PA. Hypoxia ameliorates intestinal inflammation through NLRP3/mTOR downregulation and autophagy activation. Nat Commun, 2017, 8(1): 98.

    Article  Google Scholar 

  39. Zhang J, Liu X, Wan C, Liu Y, Wang Y, Meng C, Zhang Y, Jiang C. NLRP3 inflammasome mediates M1 macrophage polarization and IL-1β production in inflammatory root resorption. J Clin Periodontal, 2020, 47(4): 451–460.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (国家自然科学基金项目, No. 81674073, No. 81904303); Natural Science Foundation of Shanghai (上海市自然科学基金项目, No. 20ZR1453000, No. 19ZR1451600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xie Chen  (谢晨) or Ma Xiao-peng  (马晓芃).

Additional information

Co-first Authors

Dong Xiao-qing, M.M., resident physician; Li Xiao-ying, 2019 master degree candidate

Conflict of Interest

Authors Ma Xiao-peng and Wu Huan-gan are members of the Editorial Board of Journal of Acupuncture and Tuina Science. The paper was handled by other editors and has undergone rigorous peer review process. Authors Ma Xiao-peng and Wu Huan-gan were not involved in the journal’s review or decisions related to this manuscript.

Statement of Human and Animal Rights

The treatment of animals conformed to the ethical criteria in this experiment.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao-qing, D., Xiao-ying, L., Xue-jun, W. et al. Study on the regulatory effect of herbal cake-partitioned moxibustion on colonic CD206, AMPK and TSC2 in rats with Crohn disease. J. Acupunct. Tuina. Sci. 19, 329–337 (2021). https://doi.org/10.1007/s11726-021-1263-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11726-021-1263-7

Keywords

关键词

中图分类号

文献标志码

Navigation