Journal of Acupuncture and Tuina Science

, Volume 15, Issue 2, pp 67–73 | Cite as

Effect of acupuncture at points selected from different regions on SCF-kit signaling pathway in diabetic gastroparesis rats

  • Li Liu (刘丽)
  • Xin Guo (郭鑫)
  • Xue-fen Wu (吴雪芬)
  • Xue-na Zheng (郑雪娜)
  • Zhi-qiang Xie (谢志强)
  • Li-na Xie (谢莉娜)
  • Zeng-hui Yue (岳增辉)
  • Jian-ling Yuan (袁建菱)
Special Topic for 973 Program



To observe the effect of acupuncture at points selected from different regions on the positive expression of interstitial cells of Cajal (ICC) and the stem cell factor (SCF) in gastric antrum tissues in diabetic gastroparesis (DGP) rats, and to explore the influence of region-based point selection on the acupoint combination efficacy.


Sixty Sprague-Dawley (SD) rats were randomly divided into a normal group (group A), a model group (group B), a group of Zusanli (ST 36) plus Zhongwan (CV 12) (group C), a group of Zusanli (ST 36) plus Neiguan (PC 6) (group D), and a group of Zusanli (ST 36) plus non-meridian non-acupoint points (group E), based on the random number table (n=12). DGP rat model was established by single intraperitoneal injection of 2% streptozotocin and common diet. After successful modeling, the rats were treated once a day for 4 weeks. Positive ICC and SCF expressions were measured by immunohistochemistry.


Compared with group A, the gastrointestinal propulsion rate of group B showed a statistically significant decrease (P<0.05). Compared with group B, the gastrointestinal propulsion rate and the expression of ICC in the gastric antrum were significantly higher in group C, group D and group E, and the between-group differences were statistically significant (P<0.05); the expression of C-kit protein in group C was statistically significantly higher than that in group D and group E (P<0.05). The expression of SCF protein was significantly increased in group C than in group B, and the difference was statistically significant (P<0.05).


Acupuncture can improve the symptoms of delayed gastric emptying in DGP model rats, and regulate the expression of ICC and SCF in gastric antrum tissues. The effect of Zusanli (ST 36) plus Zhongwan (CV 12) in the gastric region is superior to that of the Zusanli (ST 36) plus distal Neiguan (PC 6) or non-meridian non-acupoint point, indicating that region-based point selection is the key factor affecting the effect of acupoint combination.


Acupuncture Therapy Specificity of Acupoints Point Selection Interstitial Cells of Cajal Diabetes Complications Gastroparesis Rats 

按部选穴针刺治疗对糖尿病胃轻瘫大鼠胃SCF-kit 信号通路的影响



观察不同按部选穴针刺对糖尿病胃轻瘫(DGP)大鼠胃窦组织Cajal 间质细胞(ICC)阳性表达及干细胞 因子(SCF)的影响, 探讨按部选穴对腧穴配伍效应的影响。


将60 只Sprague-Dawley(SD)大鼠根据随机数字表 随机分为正常组、模型组、足三里加中脘组、足三里加内关组、足三里加非经非穴组, 每组12 只。采用单次腹 腔注射2%链脲佐菌素配合普通饲料饮食建立DGP 大鼠模型。造模成功后, 每日治疗1 次, 连续治疗4 星期。用 免疫组织化学法测定ICC 阳性及SCF 表达。


与正常组比较, 模型组胃肠推进率明显减低, 组间差异有统计 学意义(P<0.05)。与模型组比较, 足三里加中脘组、足三里加内关组、足三里加非经非穴组胃肠推进率、胃窦组 织ICC 表达显著升高, 组间差异有统计学意义(P<0.05); 足三里加中脘组C-kit 蛋白表达显著高于足三里加内关 组、足三里加非经非穴组, 组间差异具有统计学意义(P<0.05); 与模型组比较, 足三里加中脘组SCF 蛋白表达明 显升高, 组间差异有统计学意义(P<0.05)。


针刺可改善DGP 模型大鼠胃排空迟缓症状, 调节胃窦组织ICC 及SCF 的表达, 足三里配合胃脘部的中脘穴的效果显著优于足三里配伍远端的内关穴或非经非穴点, 表明按部选 穴是影响腧穴配伍效应的关键因素。


针刺疗法 穴位特异性 选穴 Cajal 间质细胞 糖尿病并发症 胃轻瘫 大鼠 





Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by National Basic Research Program of China (973 Program, 国家重点基础研究发展 计划, No. 2014CB543102).


  1. [1]
    Mei ZG, Zhang DQ, Cheng JP, Huang KY, Tang CJ, Yu H. Effects of acupuncture and medicine on gastrointestinal motility and gastric electromyography in diabetic gastroparesis mice. Shizhen Guoyi Guoyao, 2015, 26(11): 2786–2789.Google Scholar
  2. [2]
    Ma H, Gao X, Lin HD, Hu Y, Li XM, Gao J, Zhao NQ. Glycated haemoglobin in diagnosis of diabetes mellitus and pre-diabetes among middle-aged and elderly population: Shanghai Changfeng study. Shengwu Yixue Yu Huanjing Kexue, 2013, 26(3): 155–162.Google Scholar
  3. [3]
    Zhou WH, Tang AH. Interference effect and its mechanism of Shuwei electuary on gastric electrical pacemaker of diabetic gastroparesis rats. Guangxi Zhongyiyao, 2015, 38(4): 61–64.Google Scholar
  4. [4]
    Yao DY, Liu F. Advances in pathogenesis of diabetic gastroparesis. Guoji Xiaohuabing Zazhi, 2011, 31(1): 16.Google Scholar
  5. [5]
    Smedh U, Håkansson ML, Meister B, Uvnäs-Moberg K. Leptin injected into the fourth ventricle inhibits gastric emptying. Neuroreport, 1998, 9(2): 297–301.CrossRefPubMedGoogle Scholar
  6. [6]
    Furness JB, Costa M. Neurons with 5-hydroxytryptaminelike immunoreactivity in the enteric nervous system: their projection in the guinea-pig small intestine. Neuroscience, 1982, 7(2): 341–349.CrossRefPubMedGoogle Scholar
  7. [7]
    Holzer P, Skofitsch G. Release of endogenous 5-hydroxytryptamine from the myenteric plexus of the guinea-pig isolated small intestine. Br J Pharmacol, 1984, 81(2): 381–386.CrossRefPubMedPubMedCentralGoogle Scholar
  8. [8]
    Gao CX, Xu ZQ, Zhu J, Xu Y. The role of Cajal mesenchymal cells and enteric nervous system in the pathogenesis of diabetic gastroparesis. Shiyong Zhongxiyi Jiehe Linchuang, 2015, 15(6): 87–90.Google Scholar
  9. [9]
    Gibbons SJ, De Giorgio R, Faussone Pellegrini MS, Garrity-Park MM, Miller SM, Schmalz PF, Young-Fadok TM, Larson DW, Dozois EJ, Camilleri M, Stanghellini V, Szurszewski JH, Farruqia G. Apoptotic cell death of human interstitial cells of Cajal. Neurogastroenterol Motil, 2009, 21(1): 85–93.CrossRefPubMedGoogle Scholar
  10. [10]
    Ding XF, Li H, Xia JQ. Relationship between diabetic gastroparesis and cajal interstitial cells with TCM syndrome differentiation. Shizhen Guoyi Guoyao, 2015, 26(11): 2742–2744.Google Scholar
  11. [11]
    Foster J, Damjanov I, Lin Z, Sarosiek I, Wetzel P, McCallum RW. Absence of the interstitial cells of Cajal in patients with gastroparesis and correlations with clinical findings. J Gastrointest Surg, 2005, 9(1): 102–108.CrossRefGoogle Scholar
  12. [12]
    Huizinga JD, Liu LW, Fitzpatrick A, Fitzpatrick A, White E, Gill S, Wang XY, Zarate N, Krebs L, Choi C, Starret T, Dixit D, Ye J. Deficiency of intramuscular ICC increases fundic muscle excitability but does not impede nitrergic innervation. Am J Physiol Gastrointest Liver Physiol, 2008, 294(2): G589–G594.CrossRefPubMedGoogle Scholar
  13. [13]
    Mu B, Liu ZW, Cui HM, Qin YN. Effect of Cajal interstitial cell on the pathogenesis of diabetic gastroparesis. Tianjin Yiyao, 2008, 36(8): 616–618.Google Scholar
  14. [14]
    Shen YF, Xu YC. Study on experimental diabetes animal model in rats induced by streptozotocin. Shiyong Zhenduan Yu Zhiliao Zazhi, 2005, 19(2): 79–80.Google Scholar
  15. [15]
    Wang Y, Xu XY, Tang YR, Yang WW, Yuan YF, Ning YJ, Yu YJ, Lin L. Effect of endogenous insulin-like growth factor and stem cell factor on diabetic colonic dysmotility. World J Gastroenterol, 2013, 19(21): 3324–3331.CrossRefPubMedPubMedCentralGoogle Scholar
  16. [16]
    Wan QQ, He FE, Lin YP. Observation on indexes related to the evolution process of diabetic gastroparalysis rat models. Hunan Zhongyiyao Daxue Xuebao, 2014, 34(10): 6–10.Google Scholar
  17. [17]
    Li ZR. Experimental Acupuncture Science. Beijing: China Press of Traditional Chinese Medicine, 2007: 255–257.Google Scholar
  18. [18]
    Zheng H, Li Y, Liu Y, Liang FR. Difference between Shaoyang acupoints and non-acupuncture points in regulating cerebrovascular flow of migraineurs. Chengdu Zhongyiyao Daxue Xuebao, 2013, 36(1): 76–79.Google Scholar
  19. [19]
    Shi XM. Therapeutics of Acupuncture and Moxibustion. Beijing: People’s Medical Publishing House, 2004: 86.Google Scholar
  20. [20]
    Shi YZ, Shan CX, Wang FC. Acupoint selection: a key factor to influence the compatibility of acupoint. Zhongguo Zhen Jiu, 2015, 35(10): 1025–1027.PubMedGoogle Scholar
  21. [21]
    Chen QF. Syndrome differentiation treatment of diabetic gastroparesis. Shiyong Zhongyi Neike Zazhi, 2015, 29(5): 74–75.Google Scholar
  22. [22]
    Wang SM, Huang SP. Professor Huang Su-ping’s clinical experience in treating diabetic gastroparesis with classical prescriptions. Yatai Chuantong Yiyao, 2015, 11(14): 47–48.Google Scholar
  23. [23]
    Zhang JL, Pei RX. Treatment of 40 cases with diabetic gastroparesis by acupuncture-moxibustion combined with electroacupuncture. Henan Zhongyi, 2013, 33(12): 2199.Google Scholar
  24. [24]
    Jin HZ. Clinical observation on 70 cases of diabetic gastroparesis treated by acupuncture and moxibustion. Zhongguo Shiyong Yiyao, 2014, 9(27): 246–247.Google Scholar
  25. [25]
    Li P, Yue ZH, Wen QQ, Wang Y. Analysis of acupoint selection law for acupuncture and moxibustion on diabetic gastroparesis in clinic and literature. Zhenjiu Linchuang Zazhi, 2015, 31(6): 37–39.Google Scholar
  26. [26]
    Liu N, Li P, Zhang JY, Chu GW. Progress in Cajal interstitial cells. Zhongguo Zhongxiyi Jiehe Zazhi, 2011, 19(6): 418–819.Google Scholar
  27. [27]
    Wu B, Liu L, Gao H, Sun H, Xue H, Li X, Zhang G, Zhou D. Distribution of interstitial cells of Cajal in Meriones unguiculatus and alterations in the development of incomplete intestinal obstruction. Histol Histopathol, 2013, 28(12): 1567–1575.PubMedGoogle Scholar
  28. [28]
    Musara C, Vaillant C. Immunohistochemical studies of the enteric nervous system and interstitial cells of Cajal in the canine stomach. Onderstepoort J Vet Res, 2013, 80(1): 518.CrossRefPubMedGoogle Scholar
  29. [29]
    Hennig GW, Spencer NJ, Jokela-Willis S, Bayquinov PO, Lee HT, Ritchie LA, Ward SM, Smith TK, Sanders KM. ICC-MY coordinate smooth muscle electrical and mechanical activity in the murine small intestine. Neurogastroenterol Motil, 2010, 22(5): e138–e151.PubMedPubMedCentralGoogle Scholar
  30. [30]
    Al-Shboul OA. The importance of interstitial cells of cajal in the gastrointestinal tract. Saudi J Gastroenterol, 2013, 19(1): 3–15.CrossRefPubMedPubMedCentralGoogle Scholar
  31. [31]
    Huizinga JD, Chen JH. Interstitial cells of Cajal: update on basic and clinical science. Curr Gastroenterol Rep, 2014, 16(1): 363.CrossRefPubMedGoogle Scholar
  32. [32]
    Tian H, Wu HN. Cajal interstitial cells and diabetic gastroparesis. Guowai Yixue Neifenmixue Fence, 2005, 25(3): 200–202.Google Scholar
  33. [33]
    Wang YR, Qiu Z. Cajal cells and gastrointestinal diseases. Linchuang Huicui, 2010, 25(2): 183–185.Google Scholar
  34. [34]
    Li N, Liu JM, Zhou HJ, Yang F, Wang JZ, Chen Y, Liang FX, Wang H. Effects of electro-acupuncture on electrogastrogram and expression of antral interstitial cells of Cajal in diabetic gastroparesis model rats. Zhonghua Zhongyiyao Xuekan, 2014, 32(8): 1855–1857.Google Scholar
  35. [35]
    Long QL, Fang DC, Shi HT, Luo YH. Ultrastructural changes of gastric Cajal interstitial cells in diabetic rats. Zhonghua Xiaohua Zazhi, 2004, 24(7): 434–435.Google Scholar
  36. [36]
    Sanders KM, Ordög T, Ward SM. Physiology and pathophysiology of the interstitial cells of Cajal: from bench to bedside ? genetic and animal models of GI motility disorders caused by loss of interstitial cells of Cajal. Am J Physiol Gastrointest Liver Physiol, 2002, 282(5): G747–G756.CrossRefPubMedGoogle Scholar
  37. [37]
    Jelacic T, Linnekin D. PKC delta plays opposite roles in growth mediated by wild-type Kit and an oncogenic Kit mutant. Blood, 2005, 105(5): 1923–1929.CrossRefPubMedGoogle Scholar
  38. [38]
    Brading AF, McCloskey KD. Mechanisms of disease: specialized interstitial cells of the urinary tract: an assessment of current knowledge. Nat Clin Pract Urol, 2005, 2(11): 546–554.CrossRefPubMedGoogle Scholar
  39. [39]
    Seki K, Komuro T. Distribution of interstitial cells of Cajal and gap junction protein, Cx43 in the stomach of wild-type and W/Wv mutant mice. Anat Embryol (Berl), 2002, 206(1-2): 57–65.CrossRefGoogle Scholar
  40. [40]
    Wu QX, Zhao M, Tan ZR, Qin LR, Huang X, Zhang HJ. Changes of interstitial cells of Cajal and connexin 43 expression in the gastric antrum of rats with diabetic gastroparesis: implications for interventional effect of insulin. Shijie Huaren Xiaohua Zazhi, 2014, 22(29): 4399–4405.Google Scholar
  41. [41]
    Li H, Wei LF, Zhang W, Xia JQ. Effect of He Wei Decoction on gastric cajal interstitial cells in diabetic gastroparesis rats. Shizhen Guoyi Guoyao, 2013, 24(12): 2883–2884.Google Scholar

Copyright information

© Shanghai Research Institute of Acupuncture and Meridian and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Li Liu (刘丽)
    • 1
  • Xin Guo (郭鑫)
    • 1
  • Xue-fen Wu (吴雪芬)
    • 1
  • Xue-na Zheng (郑雪娜)
    • 1
  • Zhi-qiang Xie (谢志强)
    • 1
  • Li-na Xie (谢莉娜)
    • 1
  • Zeng-hui Yue (岳增辉)
    • 1
  • Jian-ling Yuan (袁建菱)
    • 1
  1. 1.School of Acupuncture, Moxibustion & TuinaHunan University of Chinese MedicineChangshaChina

Personalised recommendations