Skip to main content

Advertisement

Log in

Present situation and prospects about application of microelectrode array in study on acupuncture efficacy

微电极阵列在针灸效应研究中的应用现状及前景

  • Critical Review
  • Published:
Journal of Acupuncture and Tuina Science Aims and scope Submit manuscript

Abstract

As a component of traditional Chinese medical therapies, the therapeutic effects of acupuncture for some nervous system diseases have been proven by a large number of clinical and experimental studies. But, the electrophysiological techniques of the commonly used EEG and evoked potentials are still not sufficient to reveal the functional mechanism of acupuncture therapy. The recording technique of microelectrode array (MEA), a kind of electrophysiological technique originated from the overseas biological electrical signal monitoring technique, can be used to record multiple electrical signals of the nervous cells in vivo or in vitro, and maintain the accuracy and stability of the recorded information at the same time, which greatly enriches the means of electrophysiological study. This technique has been already applied in the basic study and clinical treatment abroad, but it is very seldom used in the study of acupuncture field. In order to guide the application of MEA in the research field of acupuncture science, a general survey about the application of MEA technique in vivo was done, and the present situation and prospects of the application of the technique in acupuncture science was briefly analyzed.

摘要

针灸疗法作为中医传统疗法的一部分, 其对部分神经系统疾病的疗效已被大量的临床与实验研究所证实, 然而现有常用的脑电图、 诱发电位等电生理技术对于揭示针灸的作用机理尚有诸多不足之处。 微电极阵列记录技术是起源于国外的生物电信号监测技术, 属于电生理技术的一种, 可在体或离体同时记录多个神经细胞的电信号, 同时又保持记录信息的准确性、 稳定性, 较大程度丰富了电生理学研究的手段。 该技术虽然在国外已经应用于基础研究和临床治疗, 但是将该技术应用于针灸学领域的研究并不多见。 对微电极阵列技术的在体应用情况进行综述, 简要分析该技术应用于针灸学研究的现状及前景, 以指导微电极阵列技术在针灸学研究领域的应用。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shi XM, Wang XW, Dai XY, Han JX, Li J, Bian JL, Li Y, Zhang HY, Zhao JG, Li JB, Gao SH. Clinical observation of acupuncture treatment for 4 728 cases of acute stage of cerebrovascular diseases. Proceedings of Sixth Tianjin International Conference on Acupuncture and Chinese Medicine Clinics, 2000: 3.

    Google Scholar 

  2. Yang ZX, Bian JL, Xu JF, Shen PF, Xiong J, Guo JK, Zhang ZL, Li J, Shi XM. A multicenter randomized controlled trial of acupuncture for the convalescent stage of cerebral infarction-report on the assessment of therapeutic effects on syndrome in traditional Chinese medicine. Shanghai Zhenjiu Zazhi, 2008, 27(8): 3–6.

    Google Scholar 

  3. He JQ, Zhao X. Recovery of acupuncture combined with rehabilitation treatment of 20 cases of muscle strength below traumatic spinal cord injury. Liaoning Zhongyi Zazhi, 2014, 41(2): 336–338.

    Google Scholar 

  4. Jiang W, Jiang TK, Sun ZH, Lu Z. Clinical observation of Cang Gui Tan Xue needling method for sciatica. Shanghai Zhenjiu Zazhi, 2014, 33(7): 616–617.

    Google Scholar 

  5. Ge LB, Fang C, Xu MS, Xu J, Li CZ, Cui XJ. Effects of electroacupuncture on the ability of learning and memory in rats with ischemia-reperfusion injury. J Acupunct Tuina Sci, 2009, 7(1): 3–7.

    Article  Google Scholar 

  6. Wang MS, Ma FG, Chen HL. Protective effects of acupuncture on brain tissue following ischemia/reperfusion injury. Neural Regen Res, 2008, 3(3): 309–312.

    CAS  Google Scholar 

  7. Zhang C. A meta analysis on aacupuncture therapy treatment of trigeminal neuralgia curative effect. Zhonghua Zhongyiyao Xuekan, 2014, 32(2): 422–424.

    Google Scholar 

  8. Xie XM, Wu P, Yang YK, Chen T, Zhang X. Progress of study on functional mechanism of acupuncture treatment for ischemic apoplexy. Zhongxiyi Jiehe Xinnaoxueguanbing Zazhi, 2011, 9(6): 738–740.

    Google Scholar 

  9. Wang Y, Ma JQ, Han L, Shen Y, Wang S. Advances in electrophysiology of acupuncture intervening cerebral ischemia. Zhenjiu Linchuang Zazhi, 2012, 2(6): 81–84.

    Google Scholar 

  10. Han Y. Development of microelectrode array system and its preliminary application in study on in vitro neural network. Master thesis of Academy of Military Medical Sciences, 2013.

    Google Scholar 

  11. Na JN, Hou YM. History of action potentials recording technique and multiple microelectrode array recording technique and clinical application. Zhongguo Xinzang Qibo Yu Xindian Shengli Zazhi, 2005, 19(4): 307–309.

    Google Scholar 

  12. Nicholson C, Llinas R. Real time current source-density analysis using multi-electrode array in cat cerebellum. Brain Res, 1975, 100(2): 418–424.

    Article  CAS  PubMed  Google Scholar 

  13. Kotani S, Nakazawa H, Tokimasa T, Akimoto K, Kawashima H, Toyoda-Ono Y, Kiso Y, Okaichi H, Sakakibara M. Synaptic plasticity preserved with arachidonic acid diet in aged rats. Neurosci Res, 2003, 46(4): 453–461.

    Article  CAS  PubMed  Google Scholar 

  14. Ding MC, Wang Q, Lo EH, Stanley GB. Cortical excitation and inhibition following focal traumatic brain injury. J Neurosci, 2011, 31(40): 14085–14094.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Fujioka H, Kaneko H, Suzuki SS, Mabuchi K. Hyperexcitability-associated rapid plasticity after a focal cerebral ischemia. Stroke, 2004, 35(7): E346–E348.

    Article  PubMed  Google Scholar 

  16. Liu XD, McCreery DB, Carter RR, Bullara LA, Yuen TG, Agnew WF. Stability of the interface between neural tissue and chronically implanted intracortical microelectrodes. IEEE T Rehabil Eng, 1999, 7(3): 315–326.

    Article  CAS  Google Scholar 

  17. Prasad A, Sanchez JC. Quantifying long-term microelectrode array functionality using chronic in vivo impedance testing. J Neural Eng, 2012, 9(2): 026028.

    Article  PubMed  Google Scholar 

  18. Han M, Manoonkitiwongsa PS, Wang CX, McCreery DB. In VIVO validation of custom-designed silicon-based microelectrode arrays for long-term neural recording and stimulation. IEEE T Bio-med Eng, 2012, 59(2): 346–354.

    Article  Google Scholar 

  19. Charvet G, Rousseau L, Billoint O, Gharbi S, Rostaing JP, Joucla S, Trevisiol M, Bourgerette A, Chauvet P, Moulin C. BioMEA (TM): A versatile high-density 3D microelectrode array system using integrated electronics. Biosens Bioelectron, 2010, 25(8): 1889–1896.

    Article  CAS  PubMed  Google Scholar 

  20. Borton DA, Ming Yin, Aceros J, Nurmikko A. An implantable wireless neural interface for recording cortical circuit dynamics in moving primates. J Neural Eng, 2013, 10(2): 026010.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Liu N, Shi WW, Chen LF, Hou WS, Yin ZQ. Recording visual cortex electrical activity through flexible microelectrode array implanted on duramater endocranium of cats. Disan Junyi Daxue Xuebao, 2011, 11: 1103–1105.

    Google Scholar 

  22. Xu ZH, Xu NG, Yi W, Fu WB, Jing R. The improvement of synaptic plasticity in the rat dentate gyrus after stroke by acupuncture. Anhui Zhongyi Xueyuan Xuebao, 2007, 26(3): 18–23.

    CAS  Google Scholar 

  23. Xu ZH, Xu NG, Yi W, Fu WB, Jing R. Effect of acupuncture at different doses on synaptic plasticity of rats after cerebral ischemia. Guangzhou Zhongyiyao Daxue Xuebao, 2009, 26(1): 32–37.

    CAS  Google Scholar 

  24. Wang XY, Shang HY, He W, Shi H, Jing XH, Zhu B. Effects of transcutaneous electrostimulation auricular concha at different stimulating frequencies and duration on acute seizures in epilepsy rats. Zhen Ci Yan Jiu, 2012, 37(6): 447–452, 457.

    PubMed  Google Scholar 

  25. Prasad A, Sahin M. Extraction of motor activity from the cervical spinal cord of behaving rats. J Neural Eng, 2006, 3(4): 287–292.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Arle JE, Shils JL, Malik WQ. Localized stimulation and recording in the spinal cord with microelectrode array//Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Diego, CA, 2012: 1851–1854.

    Google Scholar 

  27. Gad PN, Choe J, Shah KG, Tooker A, Tolosa V, Pannu S, Garcia-Alias G, Zhong H, Gerasimenko Y, Roy RR, Edgerton VR. Using in vivo spinally-evoked potentials to assess functional connectivity along the spinal axis//Neural Engineering (NER), 2013 6th International IEEE/EMBS Conference on. San Diego, CA, 2013: 319–322.

    Chapter  Google Scholar 

  28. Saigal R, Renzi C, Mushahwar VK. Intraspinal microstimulation generates functional movements after spinal-cord injury. IEEE Trans Neural Syst Rehabil Eng, 2004, 12(4): 430–440.

    Article  PubMed  Google Scholar 

  29. Mccreery D, Pikov V, Lossinsky A, Bullara L, Agnew W. Arrays for chronic functional microstimulation of the lumbosacral spinal cord. IEEE T Neur Sys Reh, 2004, 12(2): 195–207.

    Article  Google Scholar 

  30. Shen WX, Jiang ZL. A study on multi-electrode signals from spinal cord in rabbits. Nantong Daxue Xuebao: Yixue Ban, 2008, 28(3): 161–164.

    Google Scholar 

  31. Shen WX, Yuan Y, Jiang ZL, Lu GM, Yao J. Experimental study of recording and analysing electrophysiological signals from corticospinal tract in rats. Zhongguo Yingyong Shenglixue Zazhi, 2011, 27(2): 168–172.

    PubMed  Google Scholar 

  32. Fang ZR, Hu K, Wang ZM, Li LN. Influence of acupuncture to visceral harmful reaction of spinal dorsal horn cell. Zhongguo Zhen Jiu, 1982, 2(4): 44–47.

    Google Scholar 

  33. He XL, Liu X, Zhu B, Xu WD, Zhang SX. Extensive central mechanism of acupoints by strong electroacupuncture about analgesic effect of dorsal horn neurons. Acta Physiologica Sinica, 1995, 47(6): 605–609.

    CAS  PubMed  Google Scholar 

  34. Zhou T, Wang J, Han CX, Yisidatoulawo, Guo Y. Nonlinear dynamic analysis of electrical signals of wide dynamic range neurons in the spinal dorsal horn evoked by acupuncture manipulation at different frequencies. Zhongguo Zhongxiyi Jiehe Zazhi, 2012, 32(10): 1403–1406.

    PubMed  Google Scholar 

  35. Ma C, Feng KH, Yan LP. Effects of electroacupuncture on long-term potentiation of synaptic transmission in spinal dorsal horn in rats with neuropathic pain. Zhen Ci Yan Jiu, 2009, 34(5): 324–328.

    PubMed  Google Scholar 

  36. Wallman L, Levinsson A, Schouenborg J, Holmberg H, Montelius L, Danielsen N, Laurell T. Perforated Silicon nerve chips with doped registration electrodes: in vitro performance and in vivo operation. IEEE Trans Biomed Eng, 1999, 46(9): 1065–1073.

    Article  CAS  PubMed  Google Scholar 

  37. Branner A, Normann RA. A multielectrode array for intrafascicular recording and stimulation in sciatic nerve of cats. Brain Res, 2000, 51(4): 293–306.

    CAS  Google Scholar 

  38. Aoyagia Y, Richard BS, Brannerb A, Pearsona KG, Normannb RA. Capabilities of a penetrating microelectrode array for recording single units in dorsal root ganglia of the cat. J Neurosci Methods, 2003, 128(1/2): 9–20.

    Article  Google Scholar 

  39. Heiduschka P, Romann I, Stieglitz T, Thanos S. Perforated microelectrode arrays implanted in the regenerating adult central nervous system. Exp Neurol, 2001, 171(1): 1–10.

    Article  CAS  PubMed  Google Scholar 

  40. Branner A, Stein RB, Fernandez E, Aoyagi Y, Normann RA. Long-term stimulation and recording with a penetrating microelectrode array in cat sciatic nerve. IEEE Trans Biomed Eng, 2004, 51(1): 146–157.

    Article  PubMed  Google Scholar 

  41. Feng ZY, Guang L, Zheng XJ, Wang J, Li SH. Hippocampus field potentials and single cell action potentials tested by linear silicon electrode array. Shengwu Huaxue Yu Shengwu Wuli Jinzhan, 2007, 34(4): 401–407.

    Google Scholar 

  42. Kui RT, Zhang F, Yu ZM. Research status of the microelectrode in the chronic neural electrophysiology experiment. Beijing Shengwu Yixue Gongcheng, 2008, 27(6): 651–654, 665.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-shu Xu  (徐鸣曙).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Q., Xu, Ms., Xu, J. et al. Present situation and prospects about application of microelectrode array in study on acupuncture efficacy. J. Acupunct. Tuina. Sci. 13, 134–140 (2015). https://doi.org/10.1007/s11726-015-0837-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11726-015-0837-7

Keywords

关键词

中图分类号

Navigation