Skip to main content
Log in

Quel bilan d’imagerie fonctionnelle et biologique faire au diagnostic et dans le suivi d’une tumeur neuroendocrine intestinale ?

What do imaging and biological test results provide in the diagnosis and monitoring of an intestinal neuroendocrine tumour?

  • Imagerie / Imaging
  • Published:
Côlon & Rectum

Résumé

Les techniques d’imagerie fonctionnelle sont recommandées au diagnostic et dans le suivi des tumeurs neuroendocrines (TNE) intestinales. Le choix du traceur est fonction du site primitif et du grade de la TNE. Pour les TNE digestives bien différenciées, la tomographie par émission de positons (TEP) à la 18F-DOPA ainsi que la TEP au 68Ga-DOTATOC ou encore la scintigraphie des récepteurs de la somatostatine (SRS) peuvent aider à la prise en charge du patient, en permettant la détection du primitif et des métastases, l’évaluation de l’extension et de la réponse au traitement. Pour les tumeurs plus agressives, notamment les TNE du côlon et du rectum, la TEP au 18F-FDG est plus pertinente. La SRS et la TEP DOTATOC permettent également de sélectionner les patients éligibles à un traitement par analogue de la somatostatine radiomarqué. Le marqueur biologique de la TNE est la chromogranine A, mais de nombreuses interférences sont possibles (faible spécificité). Le dosage des 5-HIAA urinaires dans la TNE du grêle permet de diagnostiquer un syndrome carcinoïde.

Abstract

Radionuclide imaging plays a major role in gastroenteropancreatic neuroendocrine tumors (NET). Tumor grade and primary location of the disease helps in determining the tracer selection. 18F-DOPA positron emission tomography (PET) is the more appropriate technique used for localization of primary occult ileal NET. Somatostatin receptor (SSTR) scintigraphy and 68Ga-DOTATOC-PET are also useful for well differentiated NETs and can help in the patient management. Indeed, they enable staging, monitoring response to therapy and can select patients with metastatic disease for SSTR radionuclide therapy. 18F-FDG PET is the more relevant technique used for low differentiated NETs, like colorectal lesions. Biological marker of NET is chromogranin A but multiple interferences are possible. Chemical dosage of urinary 5-HIAA helps to diagnose carcinoid syndrome of ileal NETs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Bozkurt MF, Virgolini I, Balogova S, et al (2017) Guideline for PET/CT imaging of neuroendocrine neoplasms with 68Ga- DOTA-conjugated somatostatin receptor targeting peptides and 18F-DOPA. Eur J Nucl Med Mol Imaging 44:1588–601

    Article  CAS  PubMed  Google Scholar 

  2. Corleto VD, Falconi M, Panzuto F, et al (2008) Somatostatin receptor subtypes 2 and 5 are associated with better survival in well-differentiated endocrine carcinomas. Neuroendocrinology 89:223–30

    Article  PubMed  Google Scholar 

  3. Sundin A (2012) Radiological and nuclear medicine imaging of gastroenteropancreatic neuroendocrine tumours. Best Pract Res Clin Gastroenterol 26:803–18

    Article  PubMed  Google Scholar 

  4. Virgolini I, Ambrosini V, Bomanji JB, et al (2010) Procedure guidelines for PET/CT tumour imaging with 68Ga-DOTA-conjugated peptides: 68Ga-DOTA-TOC, 68Ga-DOTA-NOC, 68Ga- DOTA-TATE. Eur J Nucl Med Mol Imaging 37:2004–10

    Article  PubMed  Google Scholar 

  5. Deroose CM, Hindie E, Kebebew E, et al (2016) Molecular imaging of gastroenteropancreatic neuroendocrine tumors: current status and future directions. J Nucl Med 57:1949–56

    Article  CAS  PubMed  Google Scholar 

  6. Dromain C, de Baere T, Lumbroso J, et al (2005) Detection of liver metastases from endocrine tumors: a prospective comparison of somatostatin receptor scintigraphy, computed tomography, and magnetic resonance imaging. J Clin Oncol 23:70–8

    Article  PubMed  Google Scholar 

  7. Sandstrom M, Velikyan I, Garske-Roman U, et al (2013) Comparative biodistribution and radiation dosimetry of 68Ga-DOTATOC and 68Ga-DOTATATE in patients with neuroendocrine tumors. J Nucl Med 54:1755–9

    Article  PubMed  Google Scholar 

  8. Stabin MG, Kooij PP, Bakker WH, et al (1997) Radiation dosimetry for indium-111-pentetreotide. J Nucl Med 38:1919–22

    CAS  PubMed  Google Scholar 

  9. Buchmann I, Henze M, Engelbrecht S, et al (2007) Comparison of 68Ga-DOTATOC PET and 111In-DTPAOC (octreoscan) SPECT in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging 34:1617–26

    Article  CAS  PubMed  Google Scholar 

  10. Sadowski SM, Neychev V, Millo C, et al (2016) Prospective study of 68 Ga-DOTATATE positron emission tomography/computed tomography for detecting gastro-entero-pancreatic neuroendocrine tumors and unknown primary sites. J Clin Oncol 34:588–96

    Article  CAS  PubMed  Google Scholar 

  11. Eisenhauer EA, Therasse P, Bogaerts J, et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–47

    Article  CAS  PubMed  Google Scholar 

  12. Gabriel M, Oberauer A, Dobrozemsky G, et al (2009) 68Ga-DOTA-tyr3-octreotide PET for assessing response to somatostatin- receptor-mediated radionuclide therapy. J Nucl Med 50: 1427–34

    Article  CAS  PubMed  Google Scholar 

  13. Merola E, Pavel ME, Panzuto F, et al (2017) Functional imaging in the follow-up of enteropancreatic neuroendocrine tumors: clinical usefulness and indications. J Clin Endocrinol Metab 102:1486–94

    Article  PubMed  Google Scholar 

  14. Rinke A, Müller HH, Schade-Brittinger C, et al (2009) Placebocontrolled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID study group. J Clin Oncol 27:4656–63

    Article  CAS  PubMed  Google Scholar 

  15. Caplin ME, Pavel M, Ćwikła JB, et al (2014) Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N Engl J Med 371:224–33

    Article  PubMed  Google Scholar 

  16. Zaknun JJ, Bodei L, Mueller-Brand J, et al (2013) The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging 40:800–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Koopmans KP, de Vries EG, Kema IP, et al (2006) Staging of carcinoid tumours with 18F-DOPA PET: a prospective, diagnostic accuracy study. Lancet Oncol 7:728–34

    Article  CAS  PubMed  Google Scholar 

  18. Imperiale A, Rust E, Gabriel S, et al (2014) 18F-fluorodihydroxyphenylalanine PET/CT in patients with neuroendocrine tumors of unknown origin: relation to tumor origin and differentiation. J Nucl Med 55:367–72

    Article  CAS  PubMed  Google Scholar 

  19. Abgral R, Leboulleux S, Déandreis D, et al (2011) Performance of 18fluorodeoxyglucose-positron emission tomography and somatostatin receptor scintigraphy for high Ki67 (≥ 10%) well-differentiated endocrine carcinoma staging. J Clin Endocrinol Metab 96:665–71

    Article  CAS  PubMed  Google Scholar 

  20. Morris M, Saboury B, Chen W, et al (2017) Finding the sweet spot for metformin in 18F-FDG-PET. Nucl Med Commun 38:875-80

    Article  CAS  PubMed  Google Scholar 

  21. Delle Fave G, O’Toole D, Sundin A, et al (2016) ENETS consensus guidelines update for gastroduodenal neuroendocrine neoplasms. Neuroendocrinology 103:119–24

    Article  Google Scholar 

  22. Ramage JK, De Herder WW, Delle Fave G, et al (2016) ENETS consensus guidelines update for colorectal neuroendocrine neoplasms. Neuroendocrinology 103:139–43

    Article  CAS  PubMed  Google Scholar 

  23. d’Herbomez M, Coppin L, Bauters C, et al (2016) Biomarkers of neuroendocrine tumors. Ann Biol Clin (Paris) 74:669–79

    Google Scholar 

  24. Gut P, Czarnywojtek A, Fischbach J, et al (2016) Chromogranin A — unspecific neuroendocrine marker. Clinical utility and potential diagnostic pitfalls. Arch Med Sci 12:1–9

    Article  PubMed  PubMed Central  Google Scholar 

  25. Oberg K, Couvelard A, Delle Fave G, et al (2017) ENETS consensus guidelines for standard of care in neuroendocrine tumours: biochemical markers. Neuroendocrinology [in press]

    Google Scholar 

  26. SNFGE. Thesaurus national de cancérologie digestive. Tumeurs neuroendocrines digestives [Internet]. [cité le 23 août 2017]. Disponible sur: http://www.tncd.org/

    Google Scholar 

  27. Table nationale de codage de biologie [Internet]. [cité le 23 août 2017]. Disponible sur: http://www.codage.ext.cnamts.fr/codif/nabm//chapitre/index_chap.php?p_ref_menu_code=1&p_site= AMELI

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. N. Chougnet.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozenblum, L., Vercellino, L. & Chougnet, C.N. Quel bilan d’imagerie fonctionnelle et biologique faire au diagnostic et dans le suivi d’une tumeur neuroendocrine intestinale ?. Colon Rectum 11, 220–226 (2017). https://doi.org/10.1007/s11725-017-0739-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11725-017-0739-6

Mots clés

Keywords

Navigation