Stimulations cérébrales non invasives : une nouvelle option thérapeutique pour la douleur chronique ?

Noninvasive brain stimulation: a new therapeutic option in chronic pain?

Résumé

La prise en charge de la douleur chronique par des traitements médicamenteux est limitée par des problèmes d’efficacité et de tolérance. La stimulation épidurale implantée du cortex moteur primaire (MCS pour motor cortex stimulation) a montré son efficacité dans ce cas. L’objectif des techniques de stimulation non invasive est d’essayer d’obtenir le même type d’effet sans nécessiter de chirurgie. La stimulation magnétique transcrânienne répétitive (rTMS pour repetitive transcranial magnetic stimulation) a un mode d’action proche de celui de la MCS. En ciblant le cortex moteur primaire, il est possible d’obtenir un effet antalgique qui peut se prolonger pendant plus de deux semaines après chaque séance. En ce qui concerne la stimulation électrique transcrânienne, elle peut reposer sur l’application d’un courant continu (tDCS pour transcranial direct current stimulation) ou d’un courant alternatif (tACS pour transcranial alternating current stimulation et tRNS pour transcranial random noise stimulation). Cette stimulation électrique induit une modulation du potentiel de membrane d’une large zone cérébrale. L’objectif de ce bref article est d’exposer quelques données récentes sur le mode d’action et l’efficacité de ces deux techniques.

Abstract

Chronic pain care with pharmacological treatment is limited due to efficacy and tolerance. Epidural motor cortex stimulation (MCS) has proven to be effective for pain relief in chronic pain. The aim of these noninvasive stimulation techniques is to obtain the same efficacy while avoiding surgery. Repetitive transcranial magnetic stimulation (rTMS) has an action mode similar to MCS. Targeting the primary motor cortex, it is possible to obtain an analgesic effect that can last for > 2 weeks after each session. Concerning transcranial electrical stimulation, it can rely on direct current (tDCS for transcranial Direct Current Stimulation) or alternating current (tACS for transcranial Alternating Current Stimulation and tRNS for transcranial Random Noise Stimulation). This electrical stimulation leads to a modification of the membrane potential from a large brain zone. The aim of this brief article is to give several recent information concerning the mode of action and the efficacy of these two techniques.

This is a preview of subscription content, access via your institution.

Références

  1. 1.

    Bouhassira D, Lantéri-Minet M, Attal N, et al (2008) Prevalence of chronic pain with neuropathic characteristics in the general population. Pain 136:380–7

    Article  PubMed  Google Scholar 

  2. 2.

    Moisset X, Trouvin AP, Tran VT, et al (2016) Use of strong opioids in chronic non-cancer pain in adults. Evidence-based recommendations from the French Society for the Study and Treatment of Pain. Presse Med 45:447–62

    Article  PubMed  Google Scholar 

  3. 3.

    Finnerup NB, Attal N, Haroutounian S, et al (2015) Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol 14:162–73

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Macfarlane GJ, Kronisch C, Dean LE, et al (2017) EULAR revised recommendations for the management of fibromyalgia. Ann Rheum Dis 76:318–28

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Tsubokawa T, Katayama Y, Yamamoto T, et al (1991) Treatment of thalamic pain by chronic motor cortex stimulation. Pacing Clin Electrophysiol 14:131–4

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Kobayashi M, Pascual-Leone A (2003) Transcranial magnetic stimulation in neurology. Lancet Neurol 2:145–56

    Article  PubMed  Google Scholar 

  7. 7.

    Lefaucheur JP (2008) Principles of therapeutic use of transcranial and epidural cortical stimulation. Clin Neurophysiol 119:2179–84

    Article  PubMed  Google Scholar 

  8. 8.

    Lefaucheur JP (2009) Methods of therapeutic cortical stimulation. Neurophysiol Clin 39:1–14

    Article  PubMed  Google Scholar 

  9. 9.

    Deng ZD, Lisanby SH, Peterchev AV (2013) Electric field depthfocality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs. Brain Stimulat 6:1–13

    Article  Google Scholar 

  10. 10.

    Ahdab R, Ayache SS, Brugières P, et al (2010) Comparison of “standard” and “navigated” procedures of TMS coil positioning over motor, premotor and prefrontal targets in patients with chronic pain and depression. Neurophysiol Clin 40:27–36

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Jin Y, Xing G, Li G, et al (2015) High frequency repetitive transcranial magnetic stimulation therapy for chronic neuropathic pain: a meta-analysis. Pain Physician 18:E1029–E46

    PubMed  Google Scholar 

  12. 12.

    de Andrade DC, Mhalla A, Adam F, et al (2011) Neuropharmacological basis of rTMS-induced analgesia: the role of endogenous opioids. Pain 152:320–6

    Article  PubMed  Google Scholar 

  13. 13.

    Maarrawi J, Peyron R, Mertens P, et al (2007) Motor cortex stimulation for pain control induces changes in the endogenous opioid system. Neurology 69:827–34

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Maarrawi J, Peyron R, Mertens P, et al (2013) Brain opioid receptor density predicts motor cortex stimulation efficacy for chronic pain. Pain 154:2563–8

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Moisset X, de Andrade DC, Bouhassira D (2016) From pulses to pain relief: an update on the mechanisms of rTMS-induced analgesic effects. Eur J Pain 20:689–700

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Mhalla A, Baudic S, Ciampi de Andrade D, et al (2011) Longterm maintenance of the analgesic effects of transcranial magnetic stimulation in fibromyalgia. Pain 152:1478–85

    Article  PubMed  Google Scholar 

  17. 17.

    Passard A, Attal N, Benadhira R, et al (2007) Effects of unilateral repetitive transcranial magnetic stimulation of the motor cortex on chronic widespread pain in fibromyalgia. Brain J Neurol 130:2661–70

    CAS  Article  Google Scholar 

  18. 18.

    Pommier B, Créac’h C, Beauvieux V, et al (2016) Robot-guided neuronavigated rTMS as an alternative therapy for central (neuropathic) pain: clinical experience and long-term follow-up. Eur J Pain Lond Engl 20:907–16

    CAS  Article  Google Scholar 

  19. 19.

    Cruccu G, Garcia-Larrea L, Hansson P, et al (2016) EAN guidelines on central neurostimulation therapy in chronic pain conditions. Eur J Neurol 23:1489–99

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Antal A, Alekseichuk I, Bikson M, et al (2017) Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol 128:1774–809

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Inukai Y, Saito K, Sasaki R, et al (2016) Comparison of three non-invasive transcranial electrical stimulation methods for increasing cortical excitability. Front Hum Neurosci 10:668

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Antal A, Herrmann CS (2016) Transcranial alternating current and random noise stimulation: possible mechanisms. Neural Plast 2016:3616807

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Ayache SS, Palm U, Chalah MA, et al (2016) Prefrontal tDCS decreases pain in patients with multiple sclerosis. Front Neurosci 10:147

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Mori F, Codecà C, Kusayanagi H, et al (2010) Effects of anodal transcranial direct current stimulation on chronic neuropathic pain in patients with multiple sclerosis. J Pain 11:436–42

    Article  PubMed  Google Scholar 

  25. 25.

    Khedr EM, Omran EAH, Ismail NM, et al (2017) Effects of transcranial direct current stimulation on pain, mood and serum endorphin level in the treatment of fibromyalgia: a double blinded, randomized clinical trial. Brain Stimul 10:893–901

    Article  PubMed  Google Scholar 

  26. 26.

    Palm U, Chalah MA, Padberg F, et al (2016) Effects of transcranial random noise stimulation (tRNS) on affect, pain and attention in multiple sclerosis. Restor Neurol Neurosci 34:189–99

    CAS  PubMed  Google Scholar 

  27. 27.

    Curatolo M, La Bianca G, Cosentino G, et al (2017) Motor cortex tRNS improves pain, affective and cognitive impairment in patients with fibromyalgia: preliminary results of a randomised sham-controlled trial. Clin Exp Rheumatol 35:100–5

    PubMed  Google Scholar 

  28. 28.

    Attal N, Ayache SS, Ciampi de Andrade D, et al (2016) Repetitive transcranial magnetic stimulation and transcranial directcurrent stimulation in neuropathic pain due to radiculopathy: a randomized sham-controlled comparative study. Pain 157:1224–31

    Article  PubMed  Google Scholar 

  29. 29.

    Moisset X, Goudeau S, Poindessous-Jazat F, et al (2015) Prolonged continuous theta-burst stimulation is more analgesic than “classical” high frequency repetitive transcranial magnetic stimulation. Brain Stimulat 8:135–41

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to X. Moisset.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moisset, X. Stimulations cérébrales non invasives : une nouvelle option thérapeutique pour la douleur chronique ?. Douleur analg 30, 192–198 (2017). https://doi.org/10.1007/s11724-017-0532-1

Download citation

Mots clés

  • Douleur chronique
  • Stimulation magnétique transcrânienne répétitive
  • Stimulation électrique transcrânienne

Keywords

  • Chronic pain
  • rTMS (repetitive transcranial magnetic stimulation)
  • tDCS (transcranial direct current stimulation)
  • tACS (transcranial alternating current stimulation)
  • tRNS (transcranial random noise stimulation)