Douleur et Analgésie

, Volume 29, Issue 4, pp 232–240 | Cite as

Optogénétique et douleur chronique : une stratégie applicable chez l’humain ?

  • H. Beaudry
  • I. Daou
  • A. Ribeiro-da-Silva
  • P. Séguéla
Mise au Point / Update

Résumé

Les traitements actuels contre la douleur chronique procurent peu d’analgésie mais d’importants effets secondaires. Une alternative serait de moduler l’activité neuronale directement à l’aide de l’optogénétique, une thérapie génique impliquant l’utilisation de protéines photo-activables. Dans les modèles animaux, cette approche diminue les douleurs inflammatoire et neuropathique. Des avancées spectaculaires permettent d’envisager son application clinique dans les prochaines décennies.

Mots clés

Douleur chronique Optogénétique Photothérapie Analgésie Virus Thérapie génique 

Can we use optogenetics to treat chronic pain?

Abstract

The current treatments for chronic pain produce limited efficacy but severe side effects. An alternative strategy is to directly modulate neuronal activity through the use of optogenetics, a gene therapy involving photo-activatable proteins. In animal models, this approach has been shown to decrease inflammatory and neuropathic pain. Recent significant progresses allow to predict clinical applications in analgesia in the next decades.

Keywords

Chronic pain Optogenetics Phototherapy Analgesia Virus Gene therapy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Holmes D (2016) The pain drain. Nature 535:S2–S3CrossRefPubMedGoogle Scholar
  2. 2.
    Finnerup NB, Sindrup SH, Jensen TS (2010) The evidence for pharmacological treatment of neuropathic pain. Pain 150:573–81CrossRefPubMedGoogle Scholar
  3. 3.
    Devulder J, Richarz U, Nataraja SH (2005) Impact of long-term use of opioids on quality of life in patients with chronic, nonmalignant pain. Curr Med Res Opin 21:1555–68CrossRefPubMedGoogle Scholar
  4. 4.
    Fischer B, Russell C, Murphy Y, Kurdyak P (2015) Prescription opioids, abuse and public health in Canada: is fentanyl the new centre of the opioid crisis ? Pharmacoepidemiol Drug Safety 24:1334–6Google Scholar
  5. 5.
    Wolkerstorfer A, Handler N, Buschmann H (2016) New approaches to treating pain. Bioorg Med Chem Lett 26:1103–19CrossRefPubMedGoogle Scholar
  6. 6.
    Von Hehn CA, Baron R, Woolf CJ (2012) Deconstructing the neuropathic pain phenotype to reveal neural mechanisms. Neuron 73:638–52CrossRefGoogle Scholar
  7. 7.
    Nagel G, Szellas T, Huhn W, et al (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. PNAS (USA) 100:13940–5CrossRefGoogle Scholar
  8. 8.
    Boyden ES, Zhang F, Bamberg E, et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neuroscience 8:1263–8CrossRefPubMedGoogle Scholar
  9. 9.
    Yizhar O, Fenno LE, Davidson TJ, et al (2011) Optogenetics in neural systems. Neuron 71:9–34CrossRefPubMedGoogle Scholar
  10. 10.
    Mattis J, Tye KM, Ferenczi EA, et al (2012) Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nature Methods 9:159–72CrossRefGoogle Scholar
  11. 11.
    Rein ML, Deussing JM (2012) The optogenetic (r)evolution. Mol Genet Genomics 287:95–109CrossRefPubMedGoogle Scholar
  12. 12.
    Copits BA, Pullen MY, Gereau RW (2016) Spotlight on pain: optogenetic approaches for interrogating somatosensory circuits. Pain 157:2424–33CrossRefPubMedGoogle Scholar
  13. 13.
    Lin JY, Knutsen PM, Muller A, et al (2013) ReaChR: a redshifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nature Neuroscience 16:1499–508CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Chow BY, Han X, Dobry AS, et al (2010) High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463:98–102CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Gradinaru V, Zhang F, Ramakrishnan C, et al (2010) Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141:154–65CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zhang F, Wang LP, Brauner M, et al (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446:633–9CrossRefPubMedGoogle Scholar
  17. 17.
    Chuong AS, Miri ML, Busskamp V, et al (2014) Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nature Neuroscience 17:1123–9CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Berndt A, Lee SY, Ramakrishnan C, Deisseroth K (2014) Structure-guided transformation of channelrhodopsin into a light-activated chloride channel. Science 344:420–4CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wietek J, Wiegert JS, Adeishvili N, et al (2014) Conversion of channel-rhodopsin into a light-gated chloride channel. Science 344:409–12CrossRefPubMedGoogle Scholar
  20. 20.
    Cosentino C, Alberio L, Gazzarrini S, et al (2015) Optogenetics. Engineering of a light-gated potassium channel. Science 348: 707–10CrossRefPubMedGoogle Scholar
  21. 21.
    Govorunova EG, Sineshchekov OA, Janz R, et al (2015) NEUROSCIENCE. Natural light-gated anion channels: A family of microbial rhodopsins for advanced optogenetics. Science 349:647–50CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Airan RD, Thompson KR, Fenno LE, et al (2009) Temporally precise in vivo control of intracellular signalling. Nature 458:1025–9CrossRefPubMedGoogle Scholar
  23. 23.
    Siuda ER, Copits BA, Schmidt MJ, et al (2015) Spatiotemporal control of opioid signaling and behavior. Neuron 86:923–35CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Nagi K, Pineyro G (2016) Practical guide for calculating and representing biased signaling by GPCR ligands: A stepwise approach. Methods 92:78–86CrossRefPubMedGoogle Scholar
  25. 25.
    Gu L, Uhelski ML, Anand S, et al (2015) Pain inhibition by optogenetic activation of specific anterior cingulate cortical neurons. PloS One 10:e0117746Google Scholar
  26. 26.
    Kang SJ, Kwak C, Lee J, et al (2015) Bidirectional modulation of hyperalgesia via the specific control of excitatory and inhibitory neuronal activity in the ACC. Mol Brain 8:81CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Crock LW, Kolber BJ, Morgan CD, et al (2012) Central amygdala metabotropic glutamate receptor 5 in the modulation of visceral pain. J Neurosci 32:14217–26CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Dugue GP, Lorincz ML, Lottem E, et al (2014) Optogenetic recruitment of dorsal raphe serotonergic neurons acutely decreases mechanosensory responsivity in behaving mice. PloS One 9: e105941CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hickey L, Li Y, Fyson SJ, et al (2014) Optoactivation of locus ceruleus neurons evokes bidirectional changes in thermal nociception in rats. J Neurosci 34:4148–60CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Cai YQ, Wang W, Hou YY, Pan ZZ (2014) Optogenetic activation of brainstem serotonergic neurons induces persistent pain sensitization. Mol Pain 10:70CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Eliava M, Melchior M, Knobloch-Bollmann HS, et al (2016) A New Population of Parvocellular Oxytocin Neurons Controlling Magnocellular Neuron Activity and Inflammatory Pain Processing. Neuron 89:1291–304CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang Z, Gadotti VM, Chen L, et al (2015) Role of Prelimbic GABAergic Circuits in Sensory and Emotional Aspects of Neuropathic Pain. Cell Rep 12:752–9CrossRefPubMedGoogle Scholar
  33. 33.
    Lee M, Manders TR, Eberle SE, et al (2015) Activation of corticostriatal circuitry relieves chronic neuropathic pain. J Neurosci 35:5247–59CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Wang F, Belanger E, Paquet ME, et al (2016) Probing pain pathways with light. Neuroscience 338:248–71CrossRefPubMedGoogle Scholar
  35. 35.
    Daou I, Tuttle A, Longo G, et al (2013) Remote optogenetic activation and sensitization of pain pathways in freely moving mice. J Neurosci 33:18631–40CrossRefPubMedGoogle Scholar
  36. 36.
    Bonin RP, Wang F, Desrochers-Couture M, et al (2016) Epidural optogenetics for controlled analgesia. Mol Pain 12:1–11CrossRefGoogle Scholar
  37. 37.
    Daou I, Beaudry H, Ase AR, et al (2016) Optogenetic Silencing of Nav1.8-Positive Afferents Alleviates Inflammatory and Neuropathic Pain. eNeuro 3: 1-12 Google Scholar
  38. 38.
    Draxler P, Honsek SD, Forsthuber L, et al (2014) VGluT3(+) primary afferents play distinct roles in mechanical and cold hypersensitivity depending on pain etiology. J Neurosci 34:12015–28CrossRefPubMedGoogle Scholar
  39. 39.
    Iyer SM, Montgomery KL, Towne C, et al (2014) Virally mediated optogenetic excitation and inhibition of pain in freely moving nontransgenic mice. Nature Biotechnology 32:274–8CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Boada MD, Martin TJ, Peters CM, et al (2014) Fast-conducting mechanoreceptors contribute to withdrawal behavior in normal and nerve injured rats. Pain 155:2646–55CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Li B, Yang XY, Qian FP, et al (2015) A novel analgesic approach to optogenetically and specifically inhibit pain transmission using TRPV1 promoter. Brain Res 1609:12–20CrossRefPubMedGoogle Scholar
  42. 42.
    Maksimovic S, Nakatani M, Baba Y, et al (2014) Epidermal Merkel cells are mechanosensory cells that tune mammalian touch receptors. Nature 509:617–21CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Baumbauer KM, Deberry JJ, Adelman PC, et al (2015) Keratinocytes can modulate and directly initiate nociceptive responses. eLife 4:1–14CrossRefGoogle Scholar
  44. 44.
    Fink DJ, Wechuck J, Mata M, et al (2011) Gene therapy for pain: results of a phase I clinical trial. Ann Neurol 70:207–12CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Busskamp V, Duebel J, Balya D, et al (2010) Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 329:413–7CrossRefPubMedGoogle Scholar
  46. 46.
    Usoskin D, Furlan A, Islam S, et al (2015) Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nature Neuroscience 18:145–53CrossRefPubMedGoogle Scholar
  47. 47.
    Sapio MR, Goswami SC, Gross JR, et al (2016) Transcriptomic analyses of genes and tissues in inherited sensory neuropathies. Exp Neurol 283:375–95CrossRefPubMedGoogle Scholar
  48. 48.
    Towne C, Montgomery K, Iyer S, et al (2013) Optogenetic control of targeted peripheral axons in freely moving animals. PloS One 8:e72691CrossRefGoogle Scholar
  49. 49.
    Li B, Yang XY, Qian FP, et al (2015) A novel analgesic approach to optogenetically and specifically inhibit pain transmission using TRPV1 promoter. Brain Res 1609:12–20CrossRefPubMedGoogle Scholar
  50. 50.
    De Leeuw CN, Korecki AJ, Berry GE, et al (2016) rAAVcompatible MiniPromoters for restricted expression in the brain and eye. Mol Brain 9:52CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Mingozzi F, High KA (2011) Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet 12:341–55CrossRefPubMedGoogle Scholar
  52. 52.
    Brimble MA, Reiss UM, Nathwani AC, Davidoff AM (2016) New and improved AAVenues: current status of hemophilia B gene therapy. Expert Opin Biol Ther 16:79–92CrossRefPubMedGoogle Scholar
  53. 53.
    Park SI, Brenner DS, Shin G, et al (2015) Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nature Biotechnology 33:1280–6CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Montgomery KL, Yeh AJ, Ho JS, et al (2015) Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nature Methods 12:969–74CrossRefPubMedGoogle Scholar
  55. 55.
    Jeong JW, Mccall JG, Shin G, et al (2015) Wireless Optofluidic Systems for Programmable In Vivo Pharmacology and Optogenetics. Cell 162:662–74CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Folcher M, Oesterle S, Zwicky K, et al (2014) Mind-controlled transgene expression by a wireless-powered optogenetic designer cell implant. Nat Commun 5:5392CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Bainbridge JW, Mehat MS, Sundaram V, et al (2015) Long-term effect of gene therapy on Leber’s congenital amaurosis. N Engl J Med 372:1887–97CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Bryant LM, Christopher DM, Giles AR, et al (2013) Lessons learned from the clinical development and market authorization of Glybera. Hum Gene Ther Clin Dev 24:55–64CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Stauffer WR, Lak A, Yang A, et al (2016) Dopamine Neuron- Specific Optogenetic Stimulation in Rhesus Macaques. Cell 166:1564–71CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    May T, Ozden I, Brush B, et al (2014) Detection of optogenetic stimulation in somatosensory cortex by non-human primates- -towards artificial tactile sensation. PloS One 9:e114529CrossRefGoogle Scholar
  61. 61.
    Ozden I, Wang J, Lu Y, et al (2013) A coaxial optrode as multifunction write-read probe for optogenetic studies in non-human primates. J Neurosci Methods 219:142–54CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Han X, Chow BY, Zhou H, et al (2011) A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Front Syst Neurosci 5:18CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Caspary T, Anderson KV (2003) Patterning cell types in the dorsal spinal cord: what the mouse mutants say. Nat Rev Neurosci 4:289–97CrossRefPubMedGoogle Scholar
  64. 64.
    Zhang J, Cavanaugh DJ, Nemenov MI, Basbaum AI (2013) The modality-specific contribution of peptidergic and non-peptidergic nociceptors is manifest at the level of dorsal horn nociresponsive neurons. J Physiol 591:1097–110CrossRefPubMedGoogle Scholar
  65. 65.
    Cavanaugh DJ, Lee H, Lo L, et al (2009) Distinct subsets of unmyelinated primary sensory fibers mediate behavioral responses to noxious thermal and mechanical stimuli. PNAS (USA) 106:9075–80CrossRefGoogle Scholar

Copyright information

© Lavoisier 2016

Authors and Affiliations

  • H. Beaudry
    • 1
    • 2
    • 3
  • I. Daou
    • 1
    • 2
  • A. Ribeiro-da-Silva
    • 2
    • 3
  • P. Séguéla
    • 1
    • 2
  1. 1.Institut neurologique de Montréaluniversité McGill, département de neurologie et neurochirurgieMontréalCanada
  2. 2.The Alan Edwards Centre for Research on Painuniversité McGillMontréalCanada
  3. 3.Département de pharmacologie et thérapeutiqueuniversité McGillMontréalCanada

Personalised recommendations