Advertisement

Douleur et Analgésie

, Volume 26, Issue 4, pp 241–247 | Cite as

Intérêt des outils d’investigation des enzymes métaboliques en pratique clinique

  • C. F. SamerEmail author
  • V. Rollason
  • K. Ing Lorenzini
  • Y. Daali
  • J. A. Desmeules
Mise au Point / Update
  • 103 Downloads

Résumé

La variabilité interindividuelle dans la réponse médicamenteuse est un problème clinique majeur. La polymédication et les polymorphismes génétiques modulant l’activité des enzymes du métabolisme médicamenteux tels que les cytochromes P450 (CYP) sont une source de variabilité dans la réponse médicamenteuse. De nouvelles techniques diagnostiques rendues plus sûres et plus simples à réaliser ont été développées afin de diagnostiquer les variations dans l’activité métabolique des CYP (tests de phénotypage) ou de rechercher des variantes alléliques spécifiques (génotypage). Alors que le génotypage des CYP offre la possibilité de prédire le phénotype en fonction des allèles identifiés pour autant que le lien entre génotype et phénotype soit établi, le phénotypage apporte des informations sur l’activité réelle (in vivo) des CYP et est le reflet d’une combinaison de facteurs génétiques, environnementaux et endogènes. Le génotypage et le phénotypage pourraient ainsi être considérés de manière prospective afin d’identifier la molécule idéale ou la dose adéquate à administrer chez un patient donné, ou de manière rétrospective pour expliquer une réponse médicamenteuse anormale (toxicité ou inefficacité).

Mots clés

CYP450 Pharmacogénétique Phénotypage Génotypage Interactions médicamenteuses 

Investigation tools for metabolic enzymes in clinical practice

Abstract

Interindividual variability in drug response is a major clinical issue. Polymedication and genetic polymorphism modulating the activity of drug metabolism enzymes such as cytochrome P450 (CYP) are a source of variability in the drug response. New diagnostic techniques that are more reliable and simpler to perform have been developed in order to diagnose the variations in metabolic activity of CYP (phenotyping tests) or to assess specific allelic variants (genotyping). While CYP genotyping gives the option to predict the phenotype based on the identified alleles, provided that the link between the genotype and the phenotype is established, phenotyping provides information on true (in vivo) CYP activity and is a reflection of a combination of genetic, environmental and endogenic factors. Thus, genotyping and phenotyping could be considered prospectively in order to identify the ideal molecule or the correct dose to administer to a given patient, or retrospectively to explain an abnormal drug response (toxicity or inefficacy).

Keywords

CYP450 Pharmacogenetics Phenotyping Genotyping Drug interactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Balian JD, Sukhova N, Harris JW, et al (1995) The hydroxylation of omeprazole correlates with S-mephenytoin metabolism: a population study. Clin Pharmacol Ther 57:662–669PubMedCrossRefGoogle Scholar
  2. 2.
    Bradford LD (2002) CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics 3:229–243PubMedCrossRefGoogle Scholar
  3. 3.
    Breimer DD, Schellens JH (1990) A “cocktail” strategy to assess in vivo oxidative drug metabolism in humans. Trends Pharmacol Sci 11:223–225PubMedCrossRefGoogle Scholar
  4. 4.
    Capon DA, Bochner F, Kerry N, et al (1996) The influence of CYP2D6 polymorphism and quinidine on the disposition and antitussive effect of dextromethorphan in humans. Clin Pharmacol Ther 60:295–307PubMedCrossRefGoogle Scholar
  5. 5.
    Chainuvati S, Nafziger AN, Leeder JS, et al (2003) Combined phenotypic assessment of cytochrome p450 1A2, 2C9, 2C19, 2D6, and 3A, N-acetyltransferase-2, and xanthine oxidase activities with the “Cooperstown 5+1 cocktail”. Clin Pharmacol Ther 74:437–447PubMedCrossRefGoogle Scholar
  6. 6.
    Chang M, Tybring G, Dahl ML, et al (1995) Interphenotype differences in disposition and effect on gastrin levels of omeprazole: suitability of omeprazole as a probe for CYP2C19. Br J Clin Pharmacol 39:511–518PubMedCrossRefGoogle Scholar
  7. 7.
    Daali Y, Cherkaoui S, Doffey-Lazeyras F, et al (2008) Development and validation of a chemical hydrolysis method for dextromethorphan and dextrophan determination in urine samples: application to the assessment of CYP2D6 activity in fibromyalgia patients. J Chromatogr B Analyt Technol Biomed Life Sci 861:56–63PubMedCrossRefGoogle Scholar
  8. 8.
    Daali Y, Samer C, Déglon J, et al (2012) Oral flurbiprofen metabolic ratio assessment using a single-point dried blood spot. Clin Pharmacol Ther 91:489–496PubMedCrossRefGoogle Scholar
  9. 9.
    Daly AK (2003) Pharmacogenetics of the major polymorphic metabolizing enzymes. Fundam Clin Pharmacol 17:27–41PubMedCrossRefGoogle Scholar
  10. 10.
    de Leon J (2006) AmpliChip CYP450 test: personalized medicine has arrived in psychiatry. Expert Rev Mol Diagn 6:277–286PubMedCrossRefGoogle Scholar
  11. 11.
    de Leon J, Arranz MJ, Ruano G (2008) Pharmacogenetic testing in psychiatry: a review of features and clinical realities. Clin Lab Med 28:599–617PubMedCrossRefGoogle Scholar
  12. 12.
    de Leon J, Susce MT, Murray-Carmichael E (2006) The Ampli-Chip CYP450 genotyping test: integrating a new clinical tool. Mol Diagn Ther 10:135–151PubMedCrossRefGoogle Scholar
  13. 13.
    Déglon J, Thomas A, Mangin P, Staub C (2012) Direct analysis of dried blood spots coupled with mass spectrometry: concepts and biomedical applications. Anal Bioanal Chem 402:2485–2498PubMedCrossRefGoogle Scholar
  14. 14.
    Desta Z, Zhao X, Shin JG, Flockhart DA (2002) Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet 41:913–958PubMedCrossRefGoogle Scholar
  15. 15.
    Eichelbaum M, Ingelman-Sundberg M, Evans WE (2006) Pharmacogenomics and individualized drug therapy. Annu Rev Med 57:119–137PubMedCrossRefGoogle Scholar
  16. 16.
    Einarson TR (1993) Drug-related hospital admissions. Ann Pharmacother 27:832–840PubMedGoogle Scholar
  17. 17.
    EMEA (2010) Guideline on the Investigation of Drug Interactions. 16.03.2012; Available from: http://www.emea.europa.eu/docs/en_GB/document_library/Scientific_guideline/2010/05/WC500090112.pdf Google Scholar
  18. 18.
    Evans WE, Relling MV (1999) Pharmacogenomics: translating functional genomics into rational therapeutics. Science 286:487–491PubMedCrossRefGoogle Scholar
  19. 19.
    Franceschi M, Scarcelli C, Niro V, et al (2008) Prevalence, clinical features and avoidability of adverse drug reactions as cause of admission to a geriatric unit: a prospective study of 1,756 patients. Drug Saf 31:545–556PubMedCrossRefGoogle Scholar
  20. 20.
    Freedman AN, Sansbury LB, Figg WD, et al (2010) Cancer pharmacogenomics and pharmacoepidemiology: setting a research agenda to accelerate translation. J Natl Cancer Inst 102:1698–1705PubMedCrossRefGoogle Scholar
  21. 21.
    Frye RF, Matzke GR, Adedoyin A, et al (1997) Validation of the five-drug “Pittsburgh cocktail” approach for assessment of selective regulation of drug-metabolizing enzymes. Clin Pharmacol Ther 62:365–376PubMedCrossRefGoogle Scholar
  22. 22.
    Heller T, Kirchheiner J, Armstrong VW, et al (2006) AmpliChip CYP450 GeneChip: a new gene chip that allows rapid and accurate CYP2D6 genotyping. Ther Drug Monit 28:673–677PubMedCrossRefGoogle Scholar
  23. 23.
    Ingelman-Sundberg M, Oscarson M, McLellan RA (1999) Polymorphic human cytochrome P450 enzymes: an opportunity for individualized drug treatment. Trends Pharmacol Sci 20:342–349PubMedCrossRefGoogle Scholar
  24. 24.
    Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C (2007) Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther 116:496–526PubMedCrossRefGoogle Scholar
  25. 25.
    Jerdi MC, Daali Y, Oestreicher MK, et al (2004) A simplified analytical method for a phenotyping cocktail of major CYP450 biotransformation routes. J Pharm Biomed Anal 35:1203–1212PubMedCrossRefGoogle Scholar
  26. 26.
    Kirchheiner J, Brockmoller J (2005) Clinical consequences of cytochrome P450 2C9 polymorphisms. Clin Pharmacol Ther 77:1–16PubMedCrossRefGoogle Scholar
  27. 27.
    Kivisto KT, Kroemer HK (1997) Use of probe drugs as predictors of drug metabolism in humans. J Clin Pharmacol 37:40S–48SPubMedCrossRefGoogle Scholar
  28. 28.
    Lazarou J, Pomeranz BH, Corey PN (1998) Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 279:1200–1205PubMedCrossRefGoogle Scholar
  29. 29.
    Lee CR, Goldstein JA, Pieper JA (2002) Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in vitro and human data. Pharmacogenetics 12:251–263PubMedCrossRefGoogle Scholar
  30. 30.
    Lin YS, Lockwood GF, Graham MA, et al (2001) In vivo phenotyping for CYP3A by a single-point determination of midazolam plasma concentration. Pharmacogenetics 11:781–791PubMedCrossRefGoogle Scholar
  31. 31.
    Martis S, Peter I, Hulot JS, et al (2013) Multi-ethnic distribution of clinically relevant CYP2C genotypes and haplotypes. Pharmacogenomics J 13:369–377PubMedCrossRefGoogle Scholar
  32. 32.
    McGraw J, Waller D (2012) Cytochrome P450 variations in different ethnic populations. Expert Opin Drug Metab Toxicol 8:371–382PubMedCrossRefGoogle Scholar
  33. 33.
    Meadowcroft AM, Williamson KM, Patterson JH, et al (1999) The effects of fluvastatin, a CYP2C9 inhibitor, on losartan pharmacokinetics in healthy volunteers. J Clin Pharmacol 39:418–424PubMedCrossRefGoogle Scholar
  34. 34.
    Moore N, Lecointre D, Noblet C, Mabille M (1998) Frequency and cost of serious adverse drug reactions in a department of general medicine. Br J Clin Pharmacol 45:301–308PubMedCrossRefGoogle Scholar
  35. 35.
    Nelson DR (2009) The cytochrome p450 homepage. Hum Genomics 4:59–65PubMedCentralPubMedGoogle Scholar
  36. 36.
    Ou-Yang DS, Huang SL, Wang W, et al (2000) Phenotypic polymorphism and gender-related differences of CYP1A2 activity in a Chinese population. Br J Clin Pharmacol 49:145–151PubMedCrossRefGoogle Scholar
  37. 37.
    Rebsamen MC, Desmeules J, Daali Y, et al (2009) The Ampli-Chip CYP450 test: cytochrome P450 2D6 genotype assessment and phenotype prediction. Pharmacogenomics J 9:34–41PubMedCrossRefGoogle Scholar
  38. 38.
    Rettie AE, Wienkers LC, Gonzalez FJ, et al (1994) Impaired (S)-warfarin metabolism catalysed by the R144C allelic variant of CYP2C9. Pharmacogenetics 4:39–42PubMedCrossRefGoogle Scholar
  39. 39.
    Rollason V, Samer C, Piguet V, et al (2008) Pharmacogenetics of analgesics: toward the individualization of prescription. Pharmacogenomics 9:905–933PubMedCrossRefGoogle Scholar
  40. 40.
    Sachse C, Brockmöller J, Bauer S, Roots I (1997) Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. Am J Hum Genet 60:284–295PubMedCentralPubMedGoogle Scholar
  41. 41.
    Sachse C, Brockmöller J, Bauer S, Roots I (1999) Functional significance of a C→A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br J Clin Pharmacol 47:445–449PubMedCrossRefGoogle Scholar
  42. 42.
    Schmid B, Bircher J, Preisig R, Küpfer A (1985) Polymorphic dextromethorphan metabolism: co-segregation of oxidative Odemethylation with debrisoquin hydroxylation. Clin Pharmacol Ther 38:618–624PubMedCrossRefGoogle Scholar
  43. 43.
    Scott SA, Sangkuhl K, Gardner EE, et al (2011) Clinical Pharmacogenetics Implementation Consortium guidelines for cytochrome P450-2C19 (CYP2C19) genotype and clopidogrel therapy. Clin Pharmacol Ther 90:328–332PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Singh D, Kashyap A, Pandey RV, Saini KS (2011) Novel advances in cytochrome P450 research. Drug Discov Today 16:793–799PubMedCrossRefGoogle Scholar
  45. 45.
    Spigset O, Hägg S, Söderström E, Dahlqvist R (1999) The paraxanthine: caffeine ratio in serum or in saliva as a measure of CYP1A2 activity: when should the sample be obtained? Pharmacogenetics 9:409–412PubMedCrossRefGoogle Scholar
  46. 46.
    Spooner N, Lad R, Barfield M (2009) Dried blood spots as a sample collection technique for the determination of pharmacokinetics in clinical studies: considerations for the validation of a quantitative bioanalytical method. Anal Chem 81:1557–1563PubMedCrossRefGoogle Scholar
  47. 47.
    Streetman DS, Bertino JS, Jr., Nafziger AN (2000) Phenotyping of drug-metabolizing enzymes in adults: a review of in vivo cytochrome P450 phenotyping probes. Pharmacogenetics 10:187–216PubMedCrossRefGoogle Scholar
  48. 48.
    Streetman DS, Bleakley JF, Kim JS, et al (2000) Combined phenotypic assessment of CYP1A2, CYP2C19, CYP2D6, CYP3A, N-acetyltransferase-2, and xanthine oxidase with the “Cooperstown cocktail”. Clin Pharmacol Ther 68:375–383PubMedCrossRefGoogle Scholar
  49. 49.
    Strom CM, Goos D, Crossley B, et al (2012) Testing for variants in CYP2C19: population frequencies and testing experience in a clinical laboratory. Genet Med 14:95–100PubMedCrossRefGoogle Scholar
  50. 50.
    Sullivan-Klose TH, Ghanayem BI, Bell DA, et al (1996) The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics 6:341–349PubMedCrossRefGoogle Scholar
  51. 51.
    Tanaka E, Kurata N, Yasuhara H (2003) How useful is the “cocktail approach” for evaluating human hepatic drug metabolizing capacity using cytochrome P450 phenotyping probes in vivo? J Clin Pharm Ther 28:157–165PubMedCrossRefGoogle Scholar
  52. 52.
    The human cytochrome P450 (CYP) allele nomenclature database. CYP2C19 allele nomenclature. 07.03.2011 08.11.2012]; Available from: http://www.cypalleles.ki.se/cyp2c19.htm
  53. 53.
    Tybring G, Böttiger Y, Widén J, Bertilsson L (1997) Enantioselective hydroxylation of omeprazole catalyzed by CYP2C19 in Swedish white subjects. Clin Pharmacol Ther 62:129–137PubMedCrossRefGoogle Scholar
  54. 54.
    Wandel C, Böcker RH, Böhrer H, et al (1998) Relationship between hepatic cytochrome P450 3A content and activity and the disposition of midazolam administered orally. Drug Metab Dispos 26:110–114PubMedGoogle Scholar
  55. 55.
    Wilkinson GR (2005) Drug metabolism and variability among patients in drug response. N Engl J Med 352:2211–2221PubMedCrossRefGoogle Scholar
  56. 56.
    Xie HG, Prasad HC, Kim RB, Stein CM (2002) CYP2C9 allelic variants: ethnic distribution and functional significance. Adv Drug Deliv Rev 54:1257–1270PubMedCrossRefGoogle Scholar
  57. 57.
    Zanger UM, Raimundo S, Eichelbaum M (2004) Cytochrome P450 2D6: overview and update on pharmacology, genetics, biochemistry. Naunyn Schmiedebergs Arch Pharmacol 369:23–37PubMedCrossRefGoogle Scholar
  58. 58.
    Zhou SF, Liu JP, Chowbay B (2009) Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev 41:89–295PubMedCrossRefGoogle Scholar
  59. 59.
    Zhu B, Ou-Yang DS, Chen XP, et al (2001) Assessment of cytochrome P450 activity by a five-drug cocktail approach. Clin Pharmacol Ther 70:455–461PubMedCrossRefGoogle Scholar

Copyright information

© Médecine et Hygiène et Springer-Verlag France 2013

Authors and Affiliations

  • C. F. Samer
    • 1
    • 2
    Email author
  • V. Rollason
    • 1
  • K. Ing Lorenzini
    • 1
  • Y. Daali
    • 1
    • 2
  • J. A. Desmeules
    • 1
    • 2
  1. 1.Service de pharmacologie et toxicologie cliniqueshôpitaux universitaires de GenèveGenèveSuisse
  2. 2.Centre suisse de toxicologie humaine appliquée (SCAHT)université de GenèveGenèveSuisse

Personalised recommendations