Advertisement

Douleur et Analgésie

, Volume 22, Issue 3, pp 140–145 | Cite as

Les différences hommes-femmes dans la perception et la modulation de la douleur

  • A.M. AloisiEmail author
  • I. Ceccarelli
  • P. Fiorenzani
  • C. Bonezzi
Revue de la Littérature / Literature Review

Résumé

La présence de différences entre les sexes en termes de douleur est reconnue depuis longtemps. Cette étude met en évidence les nombreuses données, anciennes ou plus récentes, concernant les différences entre les sexes en termes de douleur. Ces données concernent tout particulièrement le système limbique, notamment l’hypothalamus et l’hippocampe, avec ses effets sur la stimulation et l’attention, et confirment la présence de différences entre les sexes, dues à des paramètres hormonaux et comportementaux. L’étude décrit les principales hormones gonadiques, l’estradiol et la testostérone, à travers les effets proalgésique et hypoalgésique qu’elles provoquent chez les deux sexes. Dans l’ensemble, les données tendent à soutenir la preuve clinique qui donne à la femme une meilleure capacité à retenir les stimuli douloureux, ce qui expliquerait l’incidence plus élevée des douleurs chroniques chez elle.

Mots clés

Différences entre les sexes Hormones gonadiques SNC 

Differences in the way men and women perceive and deal with pain

Abstract

The presence of sex differences in pain are well known. In this review some former and recent data on several aspects of pain research relative to sex differences are highlighted. In particular the limbic system, including the hypothalamus and the hippocampus, with its involvement in arousal and attention, is confirmed to show several sex differences revealed with behavioral and hormonal parameters. The main gonadal hormones estradiol and testosterone are described in their pro-algesic or ipo-algesic effects in both sexes. On the whole these data support the clinical evidence of a higher “ability” of females to retain painful stimuli able to explain the higher incidence of chronic pain in this sex.

Keywords

Sex differences Gonadal hormones CNS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Aloisi AM, Albonetti ME, Lodi L, et al (1993) Decrease of hippocampal choline acetyltransferase activity induced by formalin pain. Brain Res 629:167–170PubMedCrossRefGoogle Scholar
  2. 2.
    Aloisi AM, Albonetti ME, Carli G (1994) Sex differences in the behavioural response to persistent pain in rats. Neurosci Lett 179:79–82PubMedCrossRefGoogle Scholar
  3. 3.
    Aloisi AM, Casamenti F, Scali C, et al (1997) Effects of novelty, pain and stress on hippocampal extracellular acetylcholine levels in male rats. Brain Res 748:219–226PubMedCrossRefGoogle Scholar
  4. 4.
    Aloisi AM, Zimmermann M, Herdegen T (1997) Sex-dependent effects of formalin and restraint on c-fos expression in the septum and hippocampus of the rat. Neuroscience 81:951–958PubMedCrossRefGoogle Scholar
  5. 5.
    Aloisi AM (1997) Sex differences in pain-induced effects on the septo-hippocampal system. Brain Res Brain Res Rev 25:397–406PubMedCrossRefGoogle Scholar
  6. 6.
    Aloisi AM, Ceccarelli I (2000) Role of gonadal hormones in formalin-induced pain responses of male rats: modulation by estradiol and naloxone administration. Neuroscience 95:559–566PubMedCrossRefGoogle Scholar
  7. 7.
    Aloisi AM, Muscettola M, Lupo C (2001) Effects of gonadectomy and pain on interferon-gamma production in splenocytes of male and female rats. Brain Beh Immun 15:266–272CrossRefGoogle Scholar
  8. 8.
    Aloisi AM, Ceccarelli I, Fiorenzani P, et al (2004) Testosterone affects formalin-induced responses differently in male and female rats. Neurosci Lett 361:262–264PubMedCrossRefGoogle Scholar
  9. 9.
    Aloisi AM, Pari G, Ceccarelli I, et al. (2005) Gender-related effects of chronic non-malignant pain and opioid therapy on plasma levels of macrophage migration inhibitory factor (MIF). Pain 115:142–151PubMedCrossRefGoogle Scholar
  10. 10.
    Aloisi AM, Ceccarelli I, Fiorenzani P, et al (2006) Sex differences in behavioral responses to artificial calculosis in rats. V EFIC Congress, Instanbul Turkey, pp. S49–S50Google Scholar
  11. 11.
    Aloisi AM, Bachiocco V, Costantino A, et al (2007) Cross-sex hormone administration changes pain in transsexual women and men. Pain 132:S60–S67PubMedCrossRefGoogle Scholar
  12. 12.
    Brennan PA, Schellinck HM, de la Riva C, et al (1998) Changes in neurotransmitter release in the main olfactory bulb following an olfactory conditioning procedure in mice. Neuroscience 87:583–590PubMedCrossRefGoogle Scholar
  13. 13.
    Buckle J (2001) The role of aromatherapy in nursing care. Nurs Clin North Am 36:57–72PubMedGoogle Scholar
  14. 14.
    Ceccarelli I, Lariviere WR, Fiorenzani P, et al (2004) Effects of long-term exposure of lemon essential oil odor on behavioral, hormonal and neuronal parameters in male and female rats. Brain Res 1001:78–86PubMedCrossRefGoogle Scholar
  15. 15.
    Fischer L, Clemente JT, Tambeli CH (2007) The protective role of testosterone in the development of temporomandibular joint pain. J Pain 8:437–442PubMedCrossRefGoogle Scholar
  16. 16.
    Harris JA (1998) Using c-fos as a neural marker of pain. Brain Res Bull 45:1–8PubMedCrossRefGoogle Scholar
  17. 17.
    Jones N, Rog D (1998) Olfaction: a review. J Laryngol Otol 112:11–24PubMedGoogle Scholar
  18. 18.
    Komori T, Fujiwara R, Tanida M, Nomura J (1995) Potential antidepressant effects of lemon odor in rats. Eur Neuropsychopharmacol 5:477–480PubMedCrossRefGoogle Scholar
  19. 19.
    Lester LS, Fanselow MS (1985) Exposure to a cat produces opioid analgesia in rats. Behav Neurosci 99:756–759PubMedCrossRefGoogle Scholar
  20. 20.
    Liu NJ, Gintzler AR (2000) Prolonged ovarian sex steroid treatment of male rats produces antinociception: identification of sex-based divergent analgesic mechanisms. Pain 85:273–281PubMedCrossRefGoogle Scholar
  21. 21.
    Mogil JS, Chesler EJ, Wilson SG, et al (2000) Sex differences in thermal nociception and morphine antinociception in rodents depend on genotype. Neurosci Biobehav Rev 24:375–389PubMedCrossRefGoogle Scholar
  22. 22.
    Peng ZC, Grassi-Zucconi G, Bentivoglio M (1995) Fos-related protein expression in the midline paraventricular nucleus of the rat thalamus: basal oscillation and relationship with limbic efferents. Exp Brain Res 104:21–29PubMedCrossRefGoogle Scholar
  23. 23.
    Smith YR, Stohler CS, Nichols TE, et al (2006) Pronociceptive and antinociceptive effects of estradiol through endogenous opioid neurotransmission in women. J Neurosci 26:5777–5785PubMedCrossRefGoogle Scholar
  24. 24.
    Solomon MB, Herman JP (2009) Sex differences in psychopathology: of gonads, adrenals and mental illness. Physiol Behav 97:250–258PubMedCrossRefGoogle Scholar
  25. 25.
    Yamasaki H, Kakigi R, Watanabe S, Hoshiyama M (2000) Effects of distraction on pain-related somatosensory evoked magnetic fields and potentials following painful electrical stimulation. Brain Res Cogn Brain Res 9:165–175PubMedCrossRefGoogle Scholar

Copyright information

© Médecine et Hygiène et Springer-Verlag France 2009

Authors and Affiliations

  • A.M. Aloisi
    • 1
    • 2
    Email author
  • I. Ceccarelli
    • 1
    • 3
  • P. Fiorenzani
    • 1
  • C. Bonezzi
    • 2
  1. 1.Department of physiologyUniversity of SienaSienaItalie
  2. 2.Pain Medicine UnitIRCCS Fondazione Salvatore MaugeriPaviaItalie
  3. 3.Research CenterSiena BiotechSienaItalie

Personalised recommendations